{"title":"关于色散Burgers型方程的Cauchy问题","authors":"Ayman Rimah Said","doi":"10.1512/iumj.2023.72.9409","DOIUrl":null,"url":null,"abstract":"We study the paralinearised weakly dispersive Burgers type equation: ∂tu+ ∂x[Tuu]− T ∂xu 2 u+ ∂x |D| α−1 u = 0, α ∈]1, 2[, which contains the main non linear ”worst interaction” terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: ∂tu+ u∂xu+ ∂x |D| α−1 u = 0, α ∈]1, 2[, with u0 ∈ H (D), where D = T or R. Through a paradifferential complex Cole-Hopf type gauge transform we introduced in [38], we prove a new a priori estimate in H(D) under the control of ∥","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"69 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cauchy problem for dispersive Burgers type equations\",\"authors\":\"Ayman Rimah Said\",\"doi\":\"10.1512/iumj.2023.72.9409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the paralinearised weakly dispersive Burgers type equation: ∂tu+ ∂x[Tuu]− T ∂xu 2 u+ ∂x |D| α−1 u = 0, α ∈]1, 2[, which contains the main non linear ”worst interaction” terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: ∂tu+ u∂xu+ ∂x |D| α−1 u = 0, α ∈]1, 2[, with u0 ∈ H (D), where D = T or R. Through a paradifferential complex Cole-Hopf type gauge transform we introduced in [38], we prove a new a priori estimate in H(D) under the control of ∥\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9409\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9409","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了paralinearised弱色散汉堡类型方程:∂涂+∂x [Tuu]−T∂徐2 D u +∂x | |α−1 u = 0,α∈]1、2(,其中包含的主要非线性“最差互动”条款,即低交互方面,常见的弱色散汉堡类型方程:∂涂+ u∂徐D +∂x | |α−1 u = 0,α∈]1、2 (,,)uoh∈H (D), D = T或r .通过paradifferential复杂Cole-Hopf类型测量[38]中介绍了变换,我们证明一个新的先验估计在H (D)的控制下∥
On the Cauchy problem for dispersive Burgers type equations
We study the paralinearised weakly dispersive Burgers type equation: ∂tu+ ∂x[Tuu]− T ∂xu 2 u+ ∂x |D| α−1 u = 0, α ∈]1, 2[, which contains the main non linear ”worst interaction” terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: ∂tu+ u∂xu+ ∂x |D| α−1 u = 0, α ∈]1, 2[, with u0 ∈ H (D), where D = T or R. Through a paradifferential complex Cole-Hopf type gauge transform we introduced in [38], we prove a new a priori estimate in H(D) under the control of ∥