全非线性抛物方程解的空间下Lipschitz界及其最优性

IF 1.2 2区 数学 Q1 MATHEMATICS
N. Hamamuki, S. Kikkawa
{"title":"全非线性抛物方程解的空间下Lipschitz界及其最优性","authors":"N. Hamamuki, S. Kikkawa","doi":"10.1512/iumj.2023.72.9333","DOIUrl":null,"url":null,"abstract":"We derive a lower spatially Lipschitz bound for viscosity solutions to fully nonlinear parabolic partial differential equations when the initial datum belongs to the H(cid:127)older space. The resulting estimate depends on the initial H(cid:127)older exponent and the growth rates of the equation with respect to the (cid:12)rst and second order derivative terms. Our estimate is applicable to equations which are possibly singular at the initial time. Moreover, it gives the optimal rate of the regularizing effect for solutions, which occurs for some uniformly parabolic equations and (cid:12)rst order Hamilton{Jacobi equations. In the proof of our lower estimate, we construct a subsolution and a supersolution by optimally rescaling the solution of the heat equation and then compare them with the solution. For linear equations, the lower spatially Lipschitz bound for solutions can be obtained in a different way if the fundamental solution satis(cid:12)es the Aronson estimate. Examples include the heat convection equation whose convection term has singularities.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lower spatially Lipschitz bound for solutions to fully nonlinear parabolic equations and its optimality\",\"authors\":\"N. Hamamuki, S. Kikkawa\",\"doi\":\"10.1512/iumj.2023.72.9333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a lower spatially Lipschitz bound for viscosity solutions to fully nonlinear parabolic partial differential equations when the initial datum belongs to the H(cid:127)older space. The resulting estimate depends on the initial H(cid:127)older exponent and the growth rates of the equation with respect to the (cid:12)rst and second order derivative terms. Our estimate is applicable to equations which are possibly singular at the initial time. Moreover, it gives the optimal rate of the regularizing effect for solutions, which occurs for some uniformly parabolic equations and (cid:12)rst order Hamilton{Jacobi equations. In the proof of our lower estimate, we construct a subsolution and a supersolution by optimally rescaling the solution of the heat equation and then compare them with the solution. For linear equations, the lower spatially Lipschitz bound for solutions can be obtained in a different way if the fundamental solution satis(cid:12)es the Aronson estimate. Examples include the heat convection equation whose convection term has singularities.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9333\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

当初始基准属于H(cid:127)老空间时,我们导出了完全非线性抛物型偏微分方程粘度解的空间下Lipschitz界。所得到的估计取决于初始H(cid:127)老指数和方程相对于(cid:12)一阶和二阶导数项的增长率。我们的估计适用于在初始时刻可能是奇异的方程。此外,还给出了一些一致抛物型方程和(cid:12)一阶Hamilton{Jacobi方程的解的正则化效果的最优率。在证明我们的下估计时,我们通过对热方程的解进行最优缩放来构造一个亚解和一个超解,然后与解进行比较。对于线性方程,如果基本解满足Aronson估计,则可以用另一种方法得到解的空间下Lipschitz界。例子包括对流项具有奇异性的热对流方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower spatially Lipschitz bound for solutions to fully nonlinear parabolic equations and its optimality
We derive a lower spatially Lipschitz bound for viscosity solutions to fully nonlinear parabolic partial differential equations when the initial datum belongs to the H(cid:127)older space. The resulting estimate depends on the initial H(cid:127)older exponent and the growth rates of the equation with respect to the (cid:12)rst and second order derivative terms. Our estimate is applicable to equations which are possibly singular at the initial time. Moreover, it gives the optimal rate of the regularizing effect for solutions, which occurs for some uniformly parabolic equations and (cid:12)rst order Hamilton{Jacobi equations. In the proof of our lower estimate, we construct a subsolution and a supersolution by optimally rescaling the solution of the heat equation and then compare them with the solution. For linear equations, the lower spatially Lipschitz bound for solutions can be obtained in a different way if the fundamental solution satis(cid:12)es the Aronson estimate. Examples include the heat convection equation whose convection term has singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信