变量自由边界的可整流性

IF 1.2 2区 数学 Q1 MATHEMATICS
L. De Masi
{"title":"变量自由边界的可整流性","authors":"L. De Masi","doi":"10.1512/iumj.2021.70.9401","DOIUrl":null,"url":null,"abstract":"Abstract. We establish a partial rectifiability result for the free boundary of a k-varifold V . Namely, we first refine a theorem of Grüter and Jost by showing that the first variation of a general varifold with free boundary is a Radon measure. Next we show that if the mean curvature H of V is in L for some p ∈ [1, k], then the set of points where the k-density of V does not exist or is infinite has Hausdorff dimension at most k − p. We use this result to prove, under suitable assumptions, that the part of the first variation of V with positive and finite (k− 1)-density is (k− 1)-rectifiable.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Rectifiability of the free boundary for varifolds\",\"authors\":\"L. De Masi\",\"doi\":\"10.1512/iumj.2021.70.9401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We establish a partial rectifiability result for the free boundary of a k-varifold V . Namely, we first refine a theorem of Grüter and Jost by showing that the first variation of a general varifold with free boundary is a Radon measure. Next we show that if the mean curvature H of V is in L for some p ∈ [1, k], then the set of points where the k-density of V does not exist or is infinite has Hausdorff dimension at most k − p. We use this result to prove, under suitable assumptions, that the part of the first variation of V with positive and finite (k− 1)-density is (k− 1)-rectifiable.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2021.70.9401\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2021.70.9401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要我们建立了k-变量V的自由边界的部分可整流性结果。即,我们首先通过证明具有自由边界的一般变分的第一个变分是Radon测度来改进gr特尔定理和约斯特定理。其次,我们证明了对于某些p∈[1,k],如果V的平均曲率H在L中,那么V的k密度不存在或无限的点的集合具有最多k−p的Hausdorff维数。我们利用这一结果证明了在适当的假设下,V的第一个变化具有正的有限(k−1)密度的部分是(k−1)可校正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rectifiability of the free boundary for varifolds
Abstract. We establish a partial rectifiability result for the free boundary of a k-varifold V . Namely, we first refine a theorem of Grüter and Jost by showing that the first variation of a general varifold with free boundary is a Radon measure. Next we show that if the mean curvature H of V is in L for some p ∈ [1, k], then the set of points where the k-density of V does not exist or is infinite has Hausdorff dimension at most k − p. We use this result to prove, under suitable assumptions, that the part of the first variation of V with positive and finite (k− 1)-density is (k− 1)-rectifiable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信