{"title":"PEM燃料电池系统的高阶滑模控制","authors":"S. Rostami, A. R. Noei, Reza Gaderi","doi":"10.1504/IJAAC.2012.051892","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-input multi-output (MIMO) dynamic model of polymer electrolyte membrane (PEM) fuel cells. A non-linear controller is designed to prolong the stack life of the PEM fuel cell. A moderate deviation between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell. Therefore, a second-order sliding mode strategy is applied to the PEM fuel cell system. This controller is combined with a new step by step differentiators as an output-feedback controller. The differentiator estimates a successive derivative of the measured error signal up to n – 1 order after a finite time transient. Simulation procedure shows performance of the SOSM approach to control PEMFC stack pressure to provide robustness against uncertainties and disturbances.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJAAC.2012.051892","citationCount":"2","resultStr":"{\"title\":\"Control of PEM fuel cell system via higher order sliding mode control\",\"authors\":\"S. Rostami, A. R. Noei, Reza Gaderi\",\"doi\":\"10.1504/IJAAC.2012.051892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-input multi-output (MIMO) dynamic model of polymer electrolyte membrane (PEM) fuel cells. A non-linear controller is designed to prolong the stack life of the PEM fuel cell. A moderate deviation between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell. Therefore, a second-order sliding mode strategy is applied to the PEM fuel cell system. This controller is combined with a new step by step differentiators as an output-feedback controller. The differentiator estimates a successive derivative of the measured error signal up to n – 1 order after a finite time transient. Simulation procedure shows performance of the SOSM approach to control PEMFC stack pressure to provide robustness against uncertainties and disturbances.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJAAC.2012.051892\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAAC.2012.051892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAAC.2012.051892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Control of PEM fuel cell system via higher order sliding mode control
This paper presents a multi-input multi-output (MIMO) dynamic model of polymer electrolyte membrane (PEM) fuel cells. A non-linear controller is designed to prolong the stack life of the PEM fuel cell. A moderate deviation between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell. Therefore, a second-order sliding mode strategy is applied to the PEM fuel cell system. This controller is combined with a new step by step differentiators as an output-feedback controller. The differentiator estimates a successive derivative of the measured error signal up to n – 1 order after a finite time transient. Simulation procedure shows performance of the SOSM approach to control PEMFC stack pressure to provide robustness against uncertainties and disturbances.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications