鲍鱼壳珍珠层的新强化机制

M. Sullivan, Yan Chen, B. Prorok
{"title":"鲍鱼壳珍珠层的新强化机制","authors":"M. Sullivan, Yan Chen, B. Prorok","doi":"10.1504/ijecb.2015.073926","DOIUrl":null,"url":null,"abstract":"Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijecb.2015.073926","citationCount":"2","resultStr":"{\"title\":\"New strengthening mechanisms of nacre in the abalone shell\",\"authors\":\"M. Sullivan, Yan Chen, B. Prorok\",\"doi\":\"10.1504/ijecb.2015.073926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijecb.2015.073926\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijecb.2015.073926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijecb.2015.073926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

鲍鱼壳因其独特的珍珠层结构而被广泛研究。俗称珍珠母贝,由于生物矿化复合结构,这种材料具有惊人的强度。该结构中有一个单独的组件尚未得到很好的处理,称为中间层。这些是在野生鲍鱼中发现的,而不是在养殖环境中的鲍鱼中发现的。为了诱导鲍鱼壳结构随温度波动的变化,在实验室环境中控制了鲍鱼壳的生长。主要目标是在温度降低的情况下诱导出一个中间层,目的是复制野生鲍鱼的壳结构。这些发现将有助于形成用于保护应用的新材料结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New strengthening mechanisms of nacre in the abalone shell
Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信