{"title":"鲍鱼壳珍珠层的新强化机制","authors":"M. Sullivan, Yan Chen, B. Prorok","doi":"10.1504/ijecb.2015.073926","DOIUrl":null,"url":null,"abstract":"Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijecb.2015.073926","citationCount":"2","resultStr":"{\"title\":\"New strengthening mechanisms of nacre in the abalone shell\",\"authors\":\"M. Sullivan, Yan Chen, B. Prorok\",\"doi\":\"10.1504/ijecb.2015.073926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijecb.2015.073926\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijecb.2015.073926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijecb.2015.073926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New strengthening mechanisms of nacre in the abalone shell
Abalone shells have been studied extensively because of their unique nacre structure. Colloquially known as mother-of-pearl, this material is surprisingly strong because of a biomineralised composite structure. There is a separate component of the structure that has not been well-addressed, termed as a mesolayer. These are found in wild abalones, and not typically in abalones from a farm-raised environment. Growth of the abalone shells was controlled in the laboratory setting in order to induce a change in structure with temperature fluctuations. The main goal was to induce a mesolayer with a temperature decrease, with the aim of replicating the shell architecture found in wild abalones. These findings will help shape new material architectures for protective applications.