{"title":"带头盔和不带头盔爆炸载荷下大脑的生物力学参数","authors":"M. S. Jazi, A. Rezaei, G. Karami, F. Azarmi","doi":"10.1504/IJECB.2014.060400","DOIUrl":null,"url":null,"abstract":"Computational results on biomechanics of brain for a human head model with and without a helmet under the blast loading are presented. The blast propagation is simulated using the hybrid method combining the multi-material arbitrary Lagrangian-Eulerian finite element formulation and empirical blast load equations. A three dimensional model of a combat helmet is integrated with a validated 50th percentile human head-neck model. The blast-head model interactions are modelled using a penalty-based fluid-structure interaction algorithm. Biomechanical data parameters of the head/brain such as intracranial pressures and maximum shear stress are recorded and compared both with and without a helmet. The results are studied the severity of the blast under different values for the high explosive explosions and the efficiency of the wearing ballistic impact under the blast situation.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"2 1","pages":"223"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJECB.2014.060400","citationCount":"11","resultStr":"{\"title\":\"Biomechanical parameters of the brain under blast loads with and without helmets\",\"authors\":\"M. S. Jazi, A. Rezaei, G. Karami, F. Azarmi\",\"doi\":\"10.1504/IJECB.2014.060400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational results on biomechanics of brain for a human head model with and without a helmet under the blast loading are presented. The blast propagation is simulated using the hybrid method combining the multi-material arbitrary Lagrangian-Eulerian finite element formulation and empirical blast load equations. A three dimensional model of a combat helmet is integrated with a validated 50th percentile human head-neck model. The blast-head model interactions are modelled using a penalty-based fluid-structure interaction algorithm. Biomechanical data parameters of the head/brain such as intracranial pressures and maximum shear stress are recorded and compared both with and without a helmet. The results are studied the severity of the blast under different values for the high explosive explosions and the efficiency of the wearing ballistic impact under the blast situation.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"2 1\",\"pages\":\"223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJECB.2014.060400\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJECB.2014.060400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJECB.2014.060400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomechanical parameters of the brain under blast loads with and without helmets
Computational results on biomechanics of brain for a human head model with and without a helmet under the blast loading are presented. The blast propagation is simulated using the hybrid method combining the multi-material arbitrary Lagrangian-Eulerian finite element formulation and empirical blast load equations. A three dimensional model of a combat helmet is integrated with a validated 50th percentile human head-neck model. The blast-head model interactions are modelled using a penalty-based fluid-structure interaction algorithm. Biomechanical data parameters of the head/brain such as intracranial pressures and maximum shear stress are recorded and compared both with and without a helmet. The results are studied the severity of the blast under different values for the high explosive explosions and the efficiency of the wearing ballistic impact under the blast situation.