S. Mari, E. Pennestrì, Martina Trebbi, F. Nappi, D. Rughi
{"title":"逆动力学骨骼和肌肉模型的比较","authors":"S. Mari, E. Pennestrì, Martina Trebbi, F. Nappi, D. Rughi","doi":"10.1504/IJECB.2012.049807","DOIUrl":null,"url":null,"abstract":"This investigation has the purpose of developing and cross-validating algorithms and software tools for quantitative ergonomic analyses of workers movements. In particular, the results from a skeletal inverse dynamics model are directly compared with those obtained from a muscular model herein proposed. Both models rely upon experimentally gathered kinematic and electromyography data. \n \nThe 2D skeletal model is based on a multibody dynamics formulation. The software implementation can perform both kinematic and inverse dynamic analyses. Kinematic input data required by the model have been collected using an optoelectronic human motion capture system. The kinematics of the model has been compared with experimentally collected data. \n \nThe muscular electromyography (EMG)-assisted model discussed is particularly suitable for biarticular muscles. Joint torques, muscular forces and powers can be also estimated. The inputs required by this model have been collected recording surface electromyographic signals and using some kinematic output from the skeletal model. The results from mathematical models have been compared for cross-validation, and their adequacy for ergonomy analyses assessed.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"2 1","pages":"74"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJECB.2012.049807","citationCount":"0","resultStr":"{\"title\":\"A comparison between inverse dynamics skeletal and muscular models\",\"authors\":\"S. Mari, E. Pennestrì, Martina Trebbi, F. Nappi, D. Rughi\",\"doi\":\"10.1504/IJECB.2012.049807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation has the purpose of developing and cross-validating algorithms and software tools for quantitative ergonomic analyses of workers movements. In particular, the results from a skeletal inverse dynamics model are directly compared with those obtained from a muscular model herein proposed. Both models rely upon experimentally gathered kinematic and electromyography data. \\n \\nThe 2D skeletal model is based on a multibody dynamics formulation. The software implementation can perform both kinematic and inverse dynamic analyses. Kinematic input data required by the model have been collected using an optoelectronic human motion capture system. The kinematics of the model has been compared with experimentally collected data. \\n \\nThe muscular electromyography (EMG)-assisted model discussed is particularly suitable for biarticular muscles. Joint torques, muscular forces and powers can be also estimated. The inputs required by this model have been collected recording surface electromyographic signals and using some kinematic output from the skeletal model. The results from mathematical models have been compared for cross-validation, and their adequacy for ergonomy analyses assessed.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"2 1\",\"pages\":\"74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJECB.2012.049807\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJECB.2012.049807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJECB.2012.049807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison between inverse dynamics skeletal and muscular models
This investigation has the purpose of developing and cross-validating algorithms and software tools for quantitative ergonomic analyses of workers movements. In particular, the results from a skeletal inverse dynamics model are directly compared with those obtained from a muscular model herein proposed. Both models rely upon experimentally gathered kinematic and electromyography data.
The 2D skeletal model is based on a multibody dynamics formulation. The software implementation can perform both kinematic and inverse dynamic analyses. Kinematic input data required by the model have been collected using an optoelectronic human motion capture system. The kinematics of the model has been compared with experimentally collected data.
The muscular electromyography (EMG)-assisted model discussed is particularly suitable for biarticular muscles. Joint torques, muscular forces and powers can be also estimated. The inputs required by this model have been collected recording surface electromyographic signals and using some kinematic output from the skeletal model. The results from mathematical models have been compared for cross-validation, and their adequacy for ergonomy analyses assessed.