{"title":"静电纺纳米纤维网络力学性能的建模","authors":"Xiaofan Wei, Z. Xia, S. Wong, A. Baji","doi":"10.1504/IJECB.2009.022858","DOIUrl":null,"url":null,"abstract":"Electrospun nanofibres are widely investigated as extra-cellular matrix for tissue engineering and biomedical applications. Little is understood on the deformation mechanics of spun fibre mats. A model is developed to predict the deformation behaviour of randomly-oriented electrospun nanofibre network/mats with the fibre-fibre fusion and van der Waals interaction. The nanofibres in the mat are represented by chains of beads; the interactions between the beads are described by bonded (stretch, bending and torsion) and non-bonded (van der Waals) potentials. Stress-strain curves and dynamics fracture are predicted by this model. The results show that the fibre-fibre fusion has a significant effect on the tensile strength of the mats. Increasing the number of fusion points in the mat results in an increase in strength, but over-fusion may lead to lower fracture energy. The predicted stress-strain relationships are consistent with the experimental results.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"1 1","pages":"45-57"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJECB.2009.022858","citationCount":"69","resultStr":"{\"title\":\"Modelling of mechanical properties of electrospun nanofibre network\",\"authors\":\"Xiaofan Wei, Z. Xia, S. Wong, A. Baji\",\"doi\":\"10.1504/IJECB.2009.022858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrospun nanofibres are widely investigated as extra-cellular matrix for tissue engineering and biomedical applications. Little is understood on the deformation mechanics of spun fibre mats. A model is developed to predict the deformation behaviour of randomly-oriented electrospun nanofibre network/mats with the fibre-fibre fusion and van der Waals interaction. The nanofibres in the mat are represented by chains of beads; the interactions between the beads are described by bonded (stretch, bending and torsion) and non-bonded (van der Waals) potentials. Stress-strain curves and dynamics fracture are predicted by this model. The results show that the fibre-fibre fusion has a significant effect on the tensile strength of the mats. Increasing the number of fusion points in the mat results in an increase in strength, but over-fusion may lead to lower fracture energy. The predicted stress-strain relationships are consistent with the experimental results.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"1 1\",\"pages\":\"45-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJECB.2009.022858\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJECB.2009.022858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJECB.2009.022858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of mechanical properties of electrospun nanofibre network
Electrospun nanofibres are widely investigated as extra-cellular matrix for tissue engineering and biomedical applications. Little is understood on the deformation mechanics of spun fibre mats. A model is developed to predict the deformation behaviour of randomly-oriented electrospun nanofibre network/mats with the fibre-fibre fusion and van der Waals interaction. The nanofibres in the mat are represented by chains of beads; the interactions between the beads are described by bonded (stretch, bending and torsion) and non-bonded (van der Waals) potentials. Stress-strain curves and dynamics fracture are predicted by this model. The results show that the fibre-fibre fusion has a significant effect on the tensile strength of the mats. Increasing the number of fusion points in the mat results in an increase in strength, but over-fusion may lead to lower fracture energy. The predicted stress-strain relationships are consistent with the experimental results.