{"title":"具有衣壳和两种感染途径的病毒动力学模型的全局稳定性","authors":"A. Elaiw, S. E. Almalki, A. Hobiny","doi":"10.1504/ijdsde.2022.122525","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global stability of virus dynamics model with capsids and two routes of infection\",\"authors\":\"A. Elaiw, S. E. Almalki, A. Hobiny\",\"doi\":\"10.1504/ijdsde.2022.122525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":43101,\"journal\":{\"name\":\"International Journal of Dynamical Systems and Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Dynamical Systems and Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdsde.2022.122525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2022.122525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.