{"title":"具有玻尔概周期系数的广义半线性微分方程的振动性和解共轭性","authors":"M. Moalla, R. Karroum, S. Injrou","doi":"10.1504/ijdsde.2022.10051420","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation and disconjugacy for generalised half-linear differential equations with Bohr almost periodic coefficients\",\"authors\":\"M. Moalla, R. Karroum, S. Injrou\",\"doi\":\"10.1504/ijdsde.2022.10051420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":43101,\"journal\":{\"name\":\"International Journal of Dynamical Systems and Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Dynamical Systems and Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdsde.2022.10051420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2022.10051420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.