{"title":"使用机器学习算法和逻辑回归集成的全基因组mirna发现","authors":"Benjamin Ulfenborg, K. Klinga-Levan, B. Olsson","doi":"10.1504/IJDMB.2015.072755","DOIUrl":null,"url":null,"abstract":"In silico prediction of novel miRNAs from genomic sequences remains a challenging problem. This study presents a genome-wide miRNA discovery software package called GenoScan and evaluates two hairpin classification methods. These methods, one ensemble-based and one using logistic regression were benchmarked along with 15 published methods. In addition, the sequence-folding step is addressed by investigating the impact of secondary structure prediction methods and the choice of input sequence length on prediction performance. Both the accuracy of secondary structure predictions and the miRNA prediction are evaluated. In the benchmark of hairpin classification methods, the regression model achieved highest classification accuracy. Of the structure prediction methods evaluated, ContextFold achieved the highest agreement between predicted and experimentally determined structures. However, both the choice of secondary structure prediction method and input sequence length had limited impact on hairpin classification performance.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 4 1","pages":"338-59"},"PeriodicalIF":0.2000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072755","citationCount":"2","resultStr":"{\"title\":\"Genome-wide discovery of miRNAs using ensembles of machine learning algorithms and logistic regression\",\"authors\":\"Benjamin Ulfenborg, K. Klinga-Levan, B. Olsson\",\"doi\":\"10.1504/IJDMB.2015.072755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In silico prediction of novel miRNAs from genomic sequences remains a challenging problem. This study presents a genome-wide miRNA discovery software package called GenoScan and evaluates two hairpin classification methods. These methods, one ensemble-based and one using logistic regression were benchmarked along with 15 published methods. In addition, the sequence-folding step is addressed by investigating the impact of secondary structure prediction methods and the choice of input sequence length on prediction performance. Both the accuracy of secondary structure predictions and the miRNA prediction are evaluated. In the benchmark of hairpin classification methods, the regression model achieved highest classification accuracy. Of the structure prediction methods evaluated, ContextFold achieved the highest agreement between predicted and experimentally determined structures. However, both the choice of secondary structure prediction method and input sequence length had limited impact on hairpin classification performance.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"13 4 1\",\"pages\":\"338-59\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072755\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.072755\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072755","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Genome-wide discovery of miRNAs using ensembles of machine learning algorithms and logistic regression
In silico prediction of novel miRNAs from genomic sequences remains a challenging problem. This study presents a genome-wide miRNA discovery software package called GenoScan and evaluates two hairpin classification methods. These methods, one ensemble-based and one using logistic regression were benchmarked along with 15 published methods. In addition, the sequence-folding step is addressed by investigating the impact of secondary structure prediction methods and the choice of input sequence length on prediction performance. Both the accuracy of secondary structure predictions and the miRNA prediction are evaluated. In the benchmark of hairpin classification methods, the regression model achieved highest classification accuracy. Of the structure prediction methods evaluated, ContextFold achieved the highest agreement between predicted and experimentally determined structures. However, both the choice of secondary structure prediction method and input sequence length had limited impact on hairpin classification performance.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.