{"title":"基于基因本体和16S rRNA基因的微生物群落功能分析集成策略","authors":"Suping Deng, De-shuang Huang","doi":"10.1504/IJDMB.2015.070841","DOIUrl":null,"url":null,"abstract":"In order to analyse the similarity among microbial communities on functional state after assigning 16S rRNA sequences from all microbial communities to species. It's an important addition to the species-level relationship between two compared communities and can quantify their differences in function. We downloaded all functional annotation data of several microbiotas. It's developed to identify the functional distribution and the significantly enriched functional categories of microbial communities. We analysed the similarity between two microbial communities on functional state. In the experimental results, it shows that the semantic similarity can quantify the difference between two compared species on function level. It can analyse the function of microbial communities by gene ontology based on 16S rRNA gene. Exploration of the function relationship between two sets of species assemblages will be a key result of microbiome studies and may provide new insights into assembly of a wide range of ecosystems.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 1 1","pages":"63-74"},"PeriodicalIF":0.2000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070841","citationCount":"4","resultStr":"{\"title\":\"An integrated strategy for functional analysis of microbial communities based on gene ontology and 16S rRNA gene\",\"authors\":\"Suping Deng, De-shuang Huang\",\"doi\":\"10.1504/IJDMB.2015.070841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to analyse the similarity among microbial communities on functional state after assigning 16S rRNA sequences from all microbial communities to species. It's an important addition to the species-level relationship between two compared communities and can quantify their differences in function. We downloaded all functional annotation data of several microbiotas. It's developed to identify the functional distribution and the significantly enriched functional categories of microbial communities. We analysed the similarity between two microbial communities on functional state. In the experimental results, it shows that the semantic similarity can quantify the difference between two compared species on function level. It can analyse the function of microbial communities by gene ontology based on 16S rRNA gene. Exploration of the function relationship between two sets of species assemblages will be a key result of microbiome studies and may provide new insights into assembly of a wide range of ecosystems.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"13 1 1\",\"pages\":\"63-74\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070841\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.070841\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.070841","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An integrated strategy for functional analysis of microbial communities based on gene ontology and 16S rRNA gene
In order to analyse the similarity among microbial communities on functional state after assigning 16S rRNA sequences from all microbial communities to species. It's an important addition to the species-level relationship between two compared communities and can quantify their differences in function. We downloaded all functional annotation data of several microbiotas. It's developed to identify the functional distribution and the significantly enriched functional categories of microbial communities. We analysed the similarity between two microbial communities on functional state. In the experimental results, it shows that the semantic similarity can quantify the difference between two compared species on function level. It can analyse the function of microbial communities by gene ontology based on 16S rRNA gene. Exploration of the function relationship between two sets of species assemblages will be a key result of microbiome studies and may provide new insights into assembly of a wide range of ecosystems.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.