TrieAMD:一种可扩展的、高效的先验基序发现方法

Pub Date : 2015-07-01 DOI:10.1504/IJDMB.2015.070833
Isra M. Al-Turaiki, G. Badr, H. Mathkour
{"title":"TrieAMD:一种可扩展的、高效的先验基序发现方法","authors":"Isra M. Al-Turaiki, G. Badr, H. Mathkour","doi":"10.1504/IJDMB.2015.070833","DOIUrl":null,"url":null,"abstract":"Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070833","citationCount":"4","resultStr":"{\"title\":\"TrieAMD: a scalable and efficient apriori motif discovery approach\",\"authors\":\"Isra M. Al-Turaiki, G. Badr, H. Mathkour\",\"doi\":\"10.1504/IJDMB.2015.070833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070833\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.070833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.070833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基序发现是在生物序列中发现重复模式的问题。这是生物信息学中最困难和长期存在的问题之一。Apriori是一种著名的数据挖掘算法,用于发现大型数据集中的频繁模式。在本文中,我们使用Apriori算法和Trie数据结构来发现motif。我们提出了一些修改,以便我们可以使经典Apriori适应我们的问题。实验在Tompa的基准上进行,以研究我们提出的算法,基于trie的Apriori Motif Discovery (TrieAMD)的性能。结果表明,我们的算法在实际数据集上的平均灵敏度测量优于所有测试工具,这意味着我们的方法能够发现更多的基序。在特异性方面,我们的算法的性能与其他工具相当。结果还证实了该算法具有线性时间和线性空间的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
TrieAMD: a scalable and efficient apriori motif discovery approach
Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信