基于小波的基因选择方法预测弥漫性大b细胞淋巴瘤患者的生存

Pub Date : 2015-08-01 DOI:10.1504/IJDMB.2015.071556
M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh
{"title":"基于小波的基因选择方法预测弥漫性大b细胞淋巴瘤患者的生存","authors":"M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh","doi":"10.1504/IJDMB.2015.071556","DOIUrl":null,"url":null,"abstract":"Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071556","citationCount":"1","resultStr":"{\"title\":\"Wavelet-based gene selection method for survival prediction in diffuse large B-cell lymphomas patients\",\"authors\":\"M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh\",\"doi\":\"10.1504/IJDMB.2015.071556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071556\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.071556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微阵列技术允许同时测量数千个基因的表达水平。微阵列研究的一个重要方面包括基于基因表达谱预测患者生存。这自然需要使用降维程序和生存预测模型。本文提出了一种基于小波变换的生存相关基因选择新方法。通常采用Cox比例风险模型,利用所选基因建立患者生存预测模型。采用R2、一致性指数、似然比统计量和赤池信息准则对预测模型进行评价。结果表明,基于所选基因的生存预测取得了较好的效果。结果表明,在生存分析的背景下,基于小波的基因选择微阵列数据集开发更先进的工具的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Wavelet-based gene selection method for survival prediction in diffuse large B-cell lymphomas patients
Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信