Yuan Zhang, Yue Cheng, Liang Ge, Nan Du, Ke-bin Jia, A. Zhang
{"title":"从多个数据源中检测一致蛋白质功能模块的基于图的集成方法","authors":"Yuan Zhang, Yue Cheng, Liang Ge, Nan Du, Ke-bin Jia, A. Zhang","doi":"10.1504/IJDMB.2015.071534","DOIUrl":null,"url":null,"abstract":"Many clustering methods have been developed to identify functional modules in Protein-Protein Interaction (PPI) networks but the results are far from satisfaction. To overcome the noise and incomplete problems of PPI networks and find more accurate and stable functional modules, we propose an integrative method, bipartite graph-based Non-negative Matrix Factorisation method (BiNMF), in which we adopt multiple biological data sources as different views that describe PPIs. Specifically, traditional clustering models are adopted as preliminary analysis of different views of protein functional similarity. Then the intermediate clustering results are represented by a bipartite graph which can comprehensively represent the relationships between proteins and intermediate clusters and finally overlapping clustering results are achieved. Through extensive experiments, we see that our method is superior to baseline methods and detailed analysis has demonstrated the benefits of integrating diverse clustering methods and multiple biological information sources.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 2 1","pages":"122-40"},"PeriodicalIF":0.2000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071534","citationCount":"0","resultStr":"{\"title\":\"A graph-based integrative method of detecting consistent protein functional modules from multiple data sources\",\"authors\":\"Yuan Zhang, Yue Cheng, Liang Ge, Nan Du, Ke-bin Jia, A. Zhang\",\"doi\":\"10.1504/IJDMB.2015.071534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many clustering methods have been developed to identify functional modules in Protein-Protein Interaction (PPI) networks but the results are far from satisfaction. To overcome the noise and incomplete problems of PPI networks and find more accurate and stable functional modules, we propose an integrative method, bipartite graph-based Non-negative Matrix Factorisation method (BiNMF), in which we adopt multiple biological data sources as different views that describe PPIs. Specifically, traditional clustering models are adopted as preliminary analysis of different views of protein functional similarity. Then the intermediate clustering results are represented by a bipartite graph which can comprehensively represent the relationships between proteins and intermediate clusters and finally overlapping clustering results are achieved. Through extensive experiments, we see that our method is superior to baseline methods and detailed analysis has demonstrated the benefits of integrating diverse clustering methods and multiple biological information sources.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"13 2 1\",\"pages\":\"122-40\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071534\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.071534\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071534","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A graph-based integrative method of detecting consistent protein functional modules from multiple data sources
Many clustering methods have been developed to identify functional modules in Protein-Protein Interaction (PPI) networks but the results are far from satisfaction. To overcome the noise and incomplete problems of PPI networks and find more accurate and stable functional modules, we propose an integrative method, bipartite graph-based Non-negative Matrix Factorisation method (BiNMF), in which we adopt multiple biological data sources as different views that describe PPIs. Specifically, traditional clustering models are adopted as preliminary analysis of different views of protein functional similarity. Then the intermediate clustering results are represented by a bipartite graph which can comprehensively represent the relationships between proteins and intermediate clusters and finally overlapping clustering results are achieved. Through extensive experiments, we see that our method is superior to baseline methods and detailed analysis has demonstrated the benefits of integrating diverse clustering methods and multiple biological information sources.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.