具有无原子度量空间和无凸完全偏好的无限维商品空间的竞争均衡

IF 0.2 4区 经济学 Q4 ECONOMICS
Sangjik Lee
{"title":"具有无原子度量空间和无凸完全偏好的无限维商品空间的竞争均衡","authors":"Sangjik Lee","doi":"10.15057/26020","DOIUrl":null,"url":null,"abstract":"We prove the existence of a competitive equilibrium for an economy with an atomless measure space of agents and an infinite dimensional commodity space. The commodity space is a separable Banach space with a non-empty interior in its positive cone. We dispense with convexity and completeness assumptions on preferences. We employ a saturated probability space for the space of agents which enables us to utilize the convexifying effect on aggregation. By applying the Gale-Nikaido-Debreulemma, we provide a direct proof of the existence of a competitive equilibrium.","PeriodicalId":43705,"journal":{"name":"Hitotsubashi Journal of Economics","volume":"54 1","pages":"221-230"},"PeriodicalIF":0.2000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"COMPETITIVE EQUILIBRIUM WITH AN ATOMLESS MEASURE SPACE OF AGENTS AND INFINITE DIMENSIONAL COMMODITY SPACES WITHOUT CONVEX AND COMPLETE PREFERENCES\",\"authors\":\"Sangjik Lee\",\"doi\":\"10.15057/26020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of a competitive equilibrium for an economy with an atomless measure space of agents and an infinite dimensional commodity space. The commodity space is a separable Banach space with a non-empty interior in its positive cone. We dispense with convexity and completeness assumptions on preferences. We employ a saturated probability space for the space of agents which enables us to utilize the convexifying effect on aggregation. By applying the Gale-Nikaido-Debreulemma, we provide a direct proof of the existence of a competitive equilibrium.\",\"PeriodicalId\":43705,\"journal\":{\"name\":\"Hitotsubashi Journal of Economics\",\"volume\":\"54 1\",\"pages\":\"221-230\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hitotsubashi Journal of Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.15057/26020\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hitotsubashi Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.15057/26020","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

摘要

证明了具有无原子测度空间和无限维商品空间的经济存在竞争均衡。商品空间是一个可分离的巴拿赫空间,其正锥内有一个非空的内部。我们省去了关于偏好的凸性和完备性假设。我们对智能体空间采用了饱和概率空间,使我们能够利用聚合的凸化效应。通过应用gale - nikaido - debreulema,我们直接证明了竞争均衡的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPETITIVE EQUILIBRIUM WITH AN ATOMLESS MEASURE SPACE OF AGENTS AND INFINITE DIMENSIONAL COMMODITY SPACES WITHOUT CONVEX AND COMPLETE PREFERENCES
We prove the existence of a competitive equilibrium for an economy with an atomless measure space of agents and an infinite dimensional commodity space. The commodity space is a separable Banach space with a non-empty interior in its positive cone. We dispense with convexity and completeness assumptions on preferences. We employ a saturated probability space for the space of agents which enables us to utilize the convexifying effect on aggregation. By applying the Gale-Nikaido-Debreulemma, we provide a direct proof of the existence of a competitive equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信