智能系统、人工神经网络和神经模糊模型在天然气水合物生成率预测中的比较

M. Jalalnezhad, M. Ranjbar, A. Sarafi, H. Nezamabadi-pour
{"title":"智能系统、人工神经网络和神经模糊模型在天然气水合物生成率预测中的比较","authors":"M. Jalalnezhad, M. Ranjbar, A. Sarafi, H. Nezamabadi-pour","doi":"10.12777/IJSE.7.1.35-40","DOIUrl":null,"url":null,"abstract":"The main objective of this study was to present a novel approach for predication of gas hydrate formation rate based on the Intelligent Systems . Using a data set including about 470 data obtained from flow tests in a mini-loop apparatus, different predictive models were developed. From the results predicted by these models, it can be pointed out that the developed models can be used as powerful tools for prediction of gas hydrate formation rate with total errors of less than 4%.","PeriodicalId":14209,"journal":{"name":"International Journal of Science and Engineering","volume":"7 1","pages":"35-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12777/IJSE.7.1.35-40","citationCount":"2","resultStr":"{\"title\":\"Comparison of intelligent systems, artificial neural networks and neural fuzzy model for prediction of gas hydrate formation rate\",\"authors\":\"M. Jalalnezhad, M. Ranjbar, A. Sarafi, H. Nezamabadi-pour\",\"doi\":\"10.12777/IJSE.7.1.35-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this study was to present a novel approach for predication of gas hydrate formation rate based on the Intelligent Systems . Using a data set including about 470 data obtained from flow tests in a mini-loop apparatus, different predictive models were developed. From the results predicted by these models, it can be pointed out that the developed models can be used as powerful tools for prediction of gas hydrate formation rate with total errors of less than 4%.\",\"PeriodicalId\":14209,\"journal\":{\"name\":\"International Journal of Science and Engineering\",\"volume\":\"7 1\",\"pages\":\"35-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12777/IJSE.7.1.35-40\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12777/IJSE.7.1.35-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12777/IJSE.7.1.35-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的主要目的是提出一种基于智能系统预测天然气水合物形成速率的新方法。利用从一个小回路装置中获得的大约470个流量测试数据集,建立了不同的预测模型。从模型的预测结果来看,所建立的模型可以作为预测天然气水合物生成速率的有力工具,总误差小于4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of intelligent systems, artificial neural networks and neural fuzzy model for prediction of gas hydrate formation rate
The main objective of this study was to present a novel approach for predication of gas hydrate formation rate based on the Intelligent Systems . Using a data set including about 470 data obtained from flow tests in a mini-loop apparatus, different predictive models were developed. From the results predicted by these models, it can be pointed out that the developed models can be used as powerful tools for prediction of gas hydrate formation rate with total errors of less than 4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信