{"title":"启动长记忆参数的对数周期图估计器:是否值得加权","authors":"K. Patterson, S. Heravi","doi":"10.1504/IJCEE.2021.10037283","DOIUrl":null,"url":null,"abstract":"Estimation of the long-memory parameter from the log-periodogram (LP) regression, due to Geweke and Porter-Hudak (GPH), is a simple and frequently used method of semi-parametric estimation. However, the simple LP estimator suffers from a finite sample bias that increases with the dependency in the short-run component of the spectral density. In a modification of the GPH estimator, Andrews and Guggenberger, AG (2003) suggested a bias-reduced estimator, but this comes at the cost of inflating the variance. To avoid variance inflation, Guggenberger and Sun (2004, 2006) suggested a weighted LP (WLP) estimator using bands of frequencies, which potentially improves upon the simple LP estimator. In all cases a key parameter in these methods is the need to choose a frequency bandwidth, m, which confines the chosen frequencies to be in the ‘neighbourhood’ of zero. GPH suggested a ‘square-root’ rule of thumb that has been widely used, but has no optimality characteristics. An alternative, due to Hurvich and Deo (1999), is to derive the root mean square error (rmse) optimising value of m, which depends upon an unknown parameter, although that can be consistently estimated to make the method feasible. More recently, Arteche and Orbe (2009a,b), in the context of the GPH estimator, suggested a promising bootstrap method, based on the frequency domain, to obtain the rmse value of m that avoids estimating the unknown parameter. We extend this bootstrap method to the AG and WLP estimators and to consideration of bootstrapping in the frequency domain (FD) and the time domain (TD) and, in each case, to ‘blind’ and ‘local’ versions. We undertake a comparative simulation analysis of these methods for relative performance on the dimensions of bias, rmse, confidence interval width and fidelity.","PeriodicalId":42342,"journal":{"name":"International Journal of Computational Economics and Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrapping the log-periodogram estimator of the long-memory parameter: is it worth weighting\",\"authors\":\"K. Patterson, S. Heravi\",\"doi\":\"10.1504/IJCEE.2021.10037283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of the long-memory parameter from the log-periodogram (LP) regression, due to Geweke and Porter-Hudak (GPH), is a simple and frequently used method of semi-parametric estimation. However, the simple LP estimator suffers from a finite sample bias that increases with the dependency in the short-run component of the spectral density. In a modification of the GPH estimator, Andrews and Guggenberger, AG (2003) suggested a bias-reduced estimator, but this comes at the cost of inflating the variance. To avoid variance inflation, Guggenberger and Sun (2004, 2006) suggested a weighted LP (WLP) estimator using bands of frequencies, which potentially improves upon the simple LP estimator. In all cases a key parameter in these methods is the need to choose a frequency bandwidth, m, which confines the chosen frequencies to be in the ‘neighbourhood’ of zero. GPH suggested a ‘square-root’ rule of thumb that has been widely used, but has no optimality characteristics. An alternative, due to Hurvich and Deo (1999), is to derive the root mean square error (rmse) optimising value of m, which depends upon an unknown parameter, although that can be consistently estimated to make the method feasible. More recently, Arteche and Orbe (2009a,b), in the context of the GPH estimator, suggested a promising bootstrap method, based on the frequency domain, to obtain the rmse value of m that avoids estimating the unknown parameter. We extend this bootstrap method to the AG and WLP estimators and to consideration of bootstrapping in the frequency domain (FD) and the time domain (TD) and, in each case, to ‘blind’ and ‘local’ versions. We undertake a comparative simulation analysis of these methods for relative performance on the dimensions of bias, rmse, confidence interval width and fidelity.\",\"PeriodicalId\":42342,\"journal\":{\"name\":\"International Journal of Computational Economics and Econometrics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Economics and Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCEE.2021.10037283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Economics and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCEE.2021.10037283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
Bootstrapping the log-periodogram estimator of the long-memory parameter: is it worth weighting
Estimation of the long-memory parameter from the log-periodogram (LP) regression, due to Geweke and Porter-Hudak (GPH), is a simple and frequently used method of semi-parametric estimation. However, the simple LP estimator suffers from a finite sample bias that increases with the dependency in the short-run component of the spectral density. In a modification of the GPH estimator, Andrews and Guggenberger, AG (2003) suggested a bias-reduced estimator, but this comes at the cost of inflating the variance. To avoid variance inflation, Guggenberger and Sun (2004, 2006) suggested a weighted LP (WLP) estimator using bands of frequencies, which potentially improves upon the simple LP estimator. In all cases a key parameter in these methods is the need to choose a frequency bandwidth, m, which confines the chosen frequencies to be in the ‘neighbourhood’ of zero. GPH suggested a ‘square-root’ rule of thumb that has been widely used, but has no optimality characteristics. An alternative, due to Hurvich and Deo (1999), is to derive the root mean square error (rmse) optimising value of m, which depends upon an unknown parameter, although that can be consistently estimated to make the method feasible. More recently, Arteche and Orbe (2009a,b), in the context of the GPH estimator, suggested a promising bootstrap method, based on the frequency domain, to obtain the rmse value of m that avoids estimating the unknown parameter. We extend this bootstrap method to the AG and WLP estimators and to consideration of bootstrapping in the frequency domain (FD) and the time domain (TD) and, in each case, to ‘blind’ and ‘local’ versions. We undertake a comparative simulation analysis of these methods for relative performance on the dimensions of bias, rmse, confidence interval width and fidelity.
期刊介绍:
IJCEE explores the intersection of economics, econometrics and computation. It investigates the application of recent computational techniques to all branches of economic modelling, both theoretical and empirical. IJCEE aims at an international and multidisciplinary standing, promoting rigorous quantitative examination of relevant economic issues and policy analyses. The journal''s research areas include computational economic modelling, computational econometrics and statistics and simulation methods. It is an internationally competitive, peer-reviewed journal dedicated to stimulating discussion at the forefront of economic and econometric research. Topics covered include: -Computational Economics: Computational techniques applied to economic problems and policies, Agent-based modelling, Control and game theory, General equilibrium models, Optimisation methods, Economic dynamics, Software development and implementation, -Econometrics: Applied micro and macro econometrics, Monte Carlo simulation, Robustness and sensitivity analysis, Bayesian econometrics, Time series analysis and forecasting techniques, Operational research methods with applications to economics, Software development and implementation.