数值耗散和分辨率对方形风道湍流大涡模拟的影响

IF 0.6 4区 工程技术 Q4 MECHANICS
Mohammad Reza Zangeneh, A. Rasam, Z. Pouransari
{"title":"数值耗散和分辨率对方形风道湍流大涡模拟的影响","authors":"Mohammad Reza Zangeneh, A. Rasam, Z. Pouransari","doi":"10.1504/pcfd.2022.10054491","DOIUrl":null,"url":null,"abstract":"In this research, large-eddy simulation of a turbulent square duct flow is performed at the friction Reynolds number , using the dynamic Samgorinsky (DS) subgrid-scale model and the results are discussed. To assess the accuracy of the DS model, the results are compared with the reference direct numerical simulation data. Moreover, to see the effect of the DS model, a numerical simulation without a subgrid-scale model is also performed and the results are compared with those of the DS model. Simulations are carried out using a second-order finite volume method for discretization of the Navier—Stokes equations. Results from the DS model simulations, for the grid used, are in good agreement with the direct numerical simulation data for the mean velocity and Reynolds stresses and an appreciable improvement is observed with respect to the no subgrid-scale model simulations.","PeriodicalId":54552,"journal":{"name":"Progress in Computational Fluid Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the numerical dissipation and resolution on large-eddy simulation of turbulent square duct flow\",\"authors\":\"Mohammad Reza Zangeneh, A. Rasam, Z. Pouransari\",\"doi\":\"10.1504/pcfd.2022.10054491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, large-eddy simulation of a turbulent square duct flow is performed at the friction Reynolds number , using the dynamic Samgorinsky (DS) subgrid-scale model and the results are discussed. To assess the accuracy of the DS model, the results are compared with the reference direct numerical simulation data. Moreover, to see the effect of the DS model, a numerical simulation without a subgrid-scale model is also performed and the results are compared with those of the DS model. Simulations are carried out using a second-order finite volume method for discretization of the Navier—Stokes equations. Results from the DS model simulations, for the grid used, are in good agreement with the direct numerical simulation data for the mean velocity and Reynolds stresses and an appreciable improvement is observed with respect to the no subgrid-scale model simulations.\",\"PeriodicalId\":54552,\"journal\":{\"name\":\"Progress in Computational Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/pcfd.2022.10054491\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/pcfd.2022.10054491","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用动态Samgorinsky (DS)亚网格模型,对摩擦雷诺数下的方形管道湍流进行了大涡模拟,并对模拟结果进行了讨论。为了评估DS模型的准确性,将结果与参考的直接数值模拟数据进行了比较。此外,为了观察DS模型的效果,还进行了不含亚网尺度模型的数值模拟,并与DS模型的结果进行了比较。采用二阶有限体积法对Navier-Stokes方程进行了离散化仿真。对于所使用的网格,DS模型模拟的结果与平均速度和雷诺应力的直接数值模拟数据很好地一致,并且与无子网格尺度模型模拟相比,观察到明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the numerical dissipation and resolution on large-eddy simulation of turbulent square duct flow
In this research, large-eddy simulation of a turbulent square duct flow is performed at the friction Reynolds number , using the dynamic Samgorinsky (DS) subgrid-scale model and the results are discussed. To assess the accuracy of the DS model, the results are compared with the reference direct numerical simulation data. Moreover, to see the effect of the DS model, a numerical simulation without a subgrid-scale model is also performed and the results are compared with those of the DS model. Simulations are carried out using a second-order finite volume method for discretization of the Navier—Stokes equations. Results from the DS model simulations, for the grid used, are in good agreement with the direct numerical simulation data for the mean velocity and Reynolds stresses and an appreciable improvement is observed with respect to the no subgrid-scale model simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
33
审稿时长
7.5 months
期刊介绍: CFD is now considered an indispensable analysis/design tool in an ever-increasing range of industrial applications. Practical flow problems are often so complex that a high level of ingenuity is required. Thus, besides the development work in CFD, innovative CFD applications are also encouraged. PCFD''s ultimate goal is to provide a common platform for model/software developers and users by balanced international/interdisciplinary contributions, disseminating information relating to development/refinement of mathematical and numerical models, software tools and their innovative applications in CFD. Topics covered include: -Turbulence- Two-phase flows- Heat transfer- Chemical reactions and combustion- Acoustics- Unsteady flows- Free-surfaces- Fluid-solid interaction- Navier-Stokes solution techniques for incompressible and compressible flows- Discretisation methods and schemes- Convergence acceleration procedures- Grid generation and adaptation techniques- Mesh-free methods- Distributed computing- Other relevant topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信