基于大象放牧策略的优化人工神经网络经验净资产价值预测模型

Q3 Decision Sciences
Sarbeswara Hota, Kuhoo, Debahuti Mishra, S. Patnaik
{"title":"基于大象放牧策略的优化人工神经网络经验净资产价值预测模型","authors":"Sarbeswara Hota, Kuhoo, Debahuti Mishra, S. Patnaik","doi":"10.1504/IJMDM.2020.10022206","DOIUrl":null,"url":null,"abstract":"Net asset value (NAV) prediction of mutual funds is one of the promising tasks of financial time series data forecasting. It enables the investors to choose the desired mutual fund for investing. Artificial neural network (ANN) is well suited for NAV prediction as the NAV data are nonlinear in nature. This paper proposes the ANN model hybridised with elephant herding optimisation (EHO) algorithm to predict the NAV of different interval days ahead for two of the Indian mutual funds. The prediction performance of ANN-EHO model is compared with ANN, ANN-GA, ANN-PSO and ANN-DE. The results implicate that ANN-EHO model is superior to other four models.","PeriodicalId":35475,"journal":{"name":"International Journal of Management and Decision Making","volume":"19 1","pages":"118-132"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Net Asset Value Forecasting Model based on Optimized ANN using Elephant Herding Strategy\",\"authors\":\"Sarbeswara Hota, Kuhoo, Debahuti Mishra, S. Patnaik\",\"doi\":\"10.1504/IJMDM.2020.10022206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Net asset value (NAV) prediction of mutual funds is one of the promising tasks of financial time series data forecasting. It enables the investors to choose the desired mutual fund for investing. Artificial neural network (ANN) is well suited for NAV prediction as the NAV data are nonlinear in nature. This paper proposes the ANN model hybridised with elephant herding optimisation (EHO) algorithm to predict the NAV of different interval days ahead for two of the Indian mutual funds. The prediction performance of ANN-EHO model is compared with ANN, ANN-GA, ANN-PSO and ANN-DE. The results implicate that ANN-EHO model is superior to other four models.\",\"PeriodicalId\":35475,\"journal\":{\"name\":\"International Journal of Management and Decision Making\",\"volume\":\"19 1\",\"pages\":\"118-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Management and Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMDM.2020.10022206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Management and Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMDM.2020.10022206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

共同基金资产净值(NAV)预测是金融时间序列数据预测的重要课题之一。它使投资者能够选择所需的共同基金进行投资。由于NAV数据的非线性特性,人工神经网络(ANN)非常适合用于NAV预测。本文提出了将人工神经网络模型与大象群优化算法(EHO)相结合,对两家印度共同基金的不同间隔日的资产净值进行预测。比较了ANN- eho模型与ANN、ANN- ga、ANN- pso和ANN- de模型的预测性能。结果表明,ANN-EHO模型优于其他4种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Net Asset Value Forecasting Model based on Optimized ANN using Elephant Herding Strategy
Net asset value (NAV) prediction of mutual funds is one of the promising tasks of financial time series data forecasting. It enables the investors to choose the desired mutual fund for investing. Artificial neural network (ANN) is well suited for NAV prediction as the NAV data are nonlinear in nature. This paper proposes the ANN model hybridised with elephant herding optimisation (EHO) algorithm to predict the NAV of different interval days ahead for two of the Indian mutual funds. The prediction performance of ANN-EHO model is compared with ANN, ANN-GA, ANN-PSO and ANN-DE. The results implicate that ANN-EHO model is superior to other four models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Management and Decision Making
International Journal of Management and Decision Making Decision Sciences-Decision Sciences (all)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The general themes of the IJMDM seek to develop our understanding of organisational decision making and the technology used to support the decision process. A particular purpose is to consider management processes in international and cross-cultural contexts and to secure international inputs and comparisons. The IJMDM aims to provide a new venue for high quality papers focusing on the analytical and empirical study of management processes in private and public sector organisations - including cases and action research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信