A. Badarinath, A. Das, Sreya Mazumder, Riya Banerjee, P. Chakraborty, R. Saraswathy
{"title":"用概率神经网络分类T2DM患者PCR-SSCP频带:一个可靠的工具","authors":"A. Badarinath, A. Das, Sreya Mazumder, Riya Banerjee, P. Chakraborty, R. Saraswathy","doi":"10.1504/IJBRA.2015.070115","DOIUrl":null,"url":null,"abstract":"A Probabilistic Neural Network (PNN) is a statistical algorithm and consists of a grouping of multi-class data. The conventional method of detection of DNA mutations by the human eye may not detect the minute variations in PCR-SSCP bands, which may lead to false positive or false negative results. The detection by photographic images may contain a blare (noise) caused during the time of photography; therefore, image processing techniques were used to reduce image noise. PCR-SSCP gels of T2DM patients (n = 100) and controls (n = 100) were initially photographed with equal ratio of pixels and later subjected to a two-stage analysis: feature extraction and PNN. The evaluation of the results was done by quality training and the accuracy was up to 95%, and the human eye analysis showed 80% mutation detection rate. This study proves to be very reliable and gives accurate and fast detection for mutation analysis in diabetes. This method could be extended for analysis in other human diseases.","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.070115","citationCount":"0","resultStr":"{\"title\":\"Classification of PCR-SSCP bands in T2DM by probabilistic neural network: a reliable tool\",\"authors\":\"A. Badarinath, A. Das, Sreya Mazumder, Riya Banerjee, P. Chakraborty, R. Saraswathy\",\"doi\":\"10.1504/IJBRA.2015.070115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Probabilistic Neural Network (PNN) is a statistical algorithm and consists of a grouping of multi-class data. The conventional method of detection of DNA mutations by the human eye may not detect the minute variations in PCR-SSCP bands, which may lead to false positive or false negative results. The detection by photographic images may contain a blare (noise) caused during the time of photography; therefore, image processing techniques were used to reduce image noise. PCR-SSCP gels of T2DM patients (n = 100) and controls (n = 100) were initially photographed with equal ratio of pixels and later subjected to a two-stage analysis: feature extraction and PNN. The evaluation of the results was done by quality training and the accuracy was up to 95%, and the human eye analysis showed 80% mutation detection rate. This study proves to be very reliable and gives accurate and fast detection for mutation analysis in diabetes. This method could be extended for analysis in other human diseases.\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2015.070115\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2015.070115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.070115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
Classification of PCR-SSCP bands in T2DM by probabilistic neural network: a reliable tool
A Probabilistic Neural Network (PNN) is a statistical algorithm and consists of a grouping of multi-class data. The conventional method of detection of DNA mutations by the human eye may not detect the minute variations in PCR-SSCP bands, which may lead to false positive or false negative results. The detection by photographic images may contain a blare (noise) caused during the time of photography; therefore, image processing techniques were used to reduce image noise. PCR-SSCP gels of T2DM patients (n = 100) and controls (n = 100) were initially photographed with equal ratio of pixels and later subjected to a two-stage analysis: feature extraction and PNN. The evaluation of the results was done by quality training and the accuracy was up to 95%, and the human eye analysis showed 80% mutation detection rate. This study proves to be very reliable and gives accurate and fast detection for mutation analysis in diabetes. This method could be extended for analysis in other human diseases.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.