基于NSGA-II和MOGA算法的EWMA控制图多目标马尔可夫经济统计设计

Q4 Business, Management and Accounting
A. Amiri, M. Bashiri, M. Maleki, A. S. Moghaddam
{"title":"基于NSGA-II和MOGA算法的EWMA控制图多目标马尔可夫经济统计设计","authors":"A. Amiri, M. Bashiri, M. Maleki, A. S. Moghaddam","doi":"10.1504/IJMCDM.2014.066872","DOIUrl":null,"url":null,"abstract":"The exponentially weighted moving average (EWMA) control charts are useful for detecting small shifts in the process mean. In this paper, we investigate multi-objective economic-statistical design of the EWMA control charts and propose two evolutionary algorithms including non-dominated sorting genetic algorithm (NSGA-II) and multi-objective genetic algorithm (MOGA) to determine the optimal chart parameters. The cost function used in this paper is Lorenzen and Vance cost function. We also used quadratic Taguchi loss function to determine the costs of producing non-conforming items under both in-control and out-of-control situations. The average run length values in both in-control and out-of-control states are computed by using Markov chain approach. A numerical example is applied to compare the results of proposed algorithms in finding the Pareto optimal solution of the multi-objective economic-statistical model. Finally, a sensitivity analysis on the economic and the statistical criteria of the EWMA control chart under both proposed algorithms is conducted.","PeriodicalId":38183,"journal":{"name":"International Journal of Multicriteria Decision Making","volume":"4 1","pages":"332-347"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJMCDM.2014.066872","citationCount":"6","resultStr":"{\"title\":\"Multi-objective Markov-based economic-statistical design of EWMA control chart using NSGA-II and MOGA algorithms\",\"authors\":\"A. Amiri, M. Bashiri, M. Maleki, A. S. Moghaddam\",\"doi\":\"10.1504/IJMCDM.2014.066872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponentially weighted moving average (EWMA) control charts are useful for detecting small shifts in the process mean. In this paper, we investigate multi-objective economic-statistical design of the EWMA control charts and propose two evolutionary algorithms including non-dominated sorting genetic algorithm (NSGA-II) and multi-objective genetic algorithm (MOGA) to determine the optimal chart parameters. The cost function used in this paper is Lorenzen and Vance cost function. We also used quadratic Taguchi loss function to determine the costs of producing non-conforming items under both in-control and out-of-control situations. The average run length values in both in-control and out-of-control states are computed by using Markov chain approach. A numerical example is applied to compare the results of proposed algorithms in finding the Pareto optimal solution of the multi-objective economic-statistical model. Finally, a sensitivity analysis on the economic and the statistical criteria of the EWMA control chart under both proposed algorithms is conducted.\",\"PeriodicalId\":38183,\"journal\":{\"name\":\"International Journal of Multicriteria Decision Making\",\"volume\":\"4 1\",\"pages\":\"332-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJMCDM.2014.066872\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multicriteria Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMCDM.2014.066872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multicriteria Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMCDM.2014.066872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 6

摘要

指数加权移动平均(EWMA)控制图用于检测过程均值的小位移。本文研究了EWMA控制图的多目标经济统计设计,并提出了非支配排序遗传算法(NSGA-II)和多目标遗传算法(MOGA)两种进化算法来确定最优图参数。本文使用的成本函数是Lorenzen和Vance成本函数。我们也使用二次田口损失函数来确定在控制和失控情况下生产不合格品的成本。利用马尔可夫链方法计算了控制状态和失控状态下的平均行程值。通过一个算例,比较了几种算法在求解多目标经济统计模型的帕累托最优解时的结果。最后,对两种算法下EWMA控制图的经济指标和统计指标进行了敏感性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective Markov-based economic-statistical design of EWMA control chart using NSGA-II and MOGA algorithms
The exponentially weighted moving average (EWMA) control charts are useful for detecting small shifts in the process mean. In this paper, we investigate multi-objective economic-statistical design of the EWMA control charts and propose two evolutionary algorithms including non-dominated sorting genetic algorithm (NSGA-II) and multi-objective genetic algorithm (MOGA) to determine the optimal chart parameters. The cost function used in this paper is Lorenzen and Vance cost function. We also used quadratic Taguchi loss function to determine the costs of producing non-conforming items under both in-control and out-of-control situations. The average run length values in both in-control and out-of-control states are computed by using Markov chain approach. A numerical example is applied to compare the results of proposed algorithms in finding the Pareto optimal solution of the multi-objective economic-statistical model. Finally, a sensitivity analysis on the economic and the statistical criteria of the EWMA control chart under both proposed algorithms is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Multicriteria Decision Making
International Journal of Multicriteria Decision Making Business, Management and Accounting-Strategy and Management
CiteScore
0.70
自引率
0.00%
发文量
9
期刊介绍: IJMCDM is a scholarly journal that publishes high quality research contributing to the theory and practice of decision making in ill-structured problems involving multiple criteria, goals and objectives. The journal publishes papers concerning all aspects of multicriteria decision making (MCDM), including theoretical studies, empirical investigations, comparisons and real-world applications. Papers exploring the connections with other disciplines in operations research and management science are particularly welcome. Topics covered include: -Artificial intelligence, evolutionary computation, soft computing in MCDM -Conjoint/performance measurement -Decision making under uncertainty -Disaggregation analysis, preference learning/elicitation -Group decision making, multicriteria games -Multi-attribute utility/value theory -Multi-criteria decision support systems and knowledge-based systems -Multi-objective mathematical programming -Outranking relations theory -Preference modelling -Problem structuring with multiple criteria -Risk analysis/modelling, sensitivity/robustness analysis -Social choice models -Theoretical foundations of MCDM, rough set theory -Innovative applied research in relevant fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信