基于PSO-RBF神经网络的车辆状态估计

Q4 Engineering
Yingjie Liu, Qiuyun Sun, Dawei Cui
{"title":"基于PSO-RBF神经网络的车辆状态估计","authors":"Yingjie Liu, Qiuyun Sun, Dawei Cui","doi":"10.1504/IJVS.2019.101307","DOIUrl":null,"url":null,"abstract":"In the last few years, many closed-loop control systems have been introduced in the automotive field to increase the level of safety and driving automation. For the integration of such systems, it is critical to estimate motion states and parameters of the vehicle that are not exactly known or that change over time. In order to estimate the motion states and parameters, a method based on PSO-RBF neural network is presented to solve problem of vehicle state estimation in vehicle handling dynamics. The basic idea behind the work was to identify several key parameters which affected the performance of vehicle by experimental data. Then the test data was input to the simulation model for network training and verification. The results show that the method can estimate vehicle state successfully with small absolute error of side slip angle in vehicle handling dynamics. Results are included to demonstrate the effectiveness of the estimation approach and its potential benefit towards the implementation of adaptive driving assistance systems or to automatically adjust the parameters of onboard controllers as well as the effectiveness of the proposed scheme in the estimation of states and unknown inputs.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVS.2019.101307","citationCount":"2","resultStr":"{\"title\":\"Vehicle state estimation based on PSO-RBF neural network\",\"authors\":\"Yingjie Liu, Qiuyun Sun, Dawei Cui\",\"doi\":\"10.1504/IJVS.2019.101307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, many closed-loop control systems have been introduced in the automotive field to increase the level of safety and driving automation. For the integration of such systems, it is critical to estimate motion states and parameters of the vehicle that are not exactly known or that change over time. In order to estimate the motion states and parameters, a method based on PSO-RBF neural network is presented to solve problem of vehicle state estimation in vehicle handling dynamics. The basic idea behind the work was to identify several key parameters which affected the performance of vehicle by experimental data. Then the test data was input to the simulation model for network training and verification. The results show that the method can estimate vehicle state successfully with small absolute error of side slip angle in vehicle handling dynamics. Results are included to demonstrate the effectiveness of the estimation approach and its potential benefit towards the implementation of adaptive driving assistance systems or to automatically adjust the parameters of onboard controllers as well as the effectiveness of the proposed scheme in the estimation of states and unknown inputs.\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVS.2019.101307\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVS.2019.101307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVS.2019.101307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几年里,许多闭环控制系统被引入到汽车领域,以提高安全性和驾驶自动化水平。对于这些系统的集成,估计不完全已知或随时间变化的车辆的运动状态和参数至关重要。针对车辆操纵动力学中车辆状态估计问题,提出了一种基于PSO-RBF神经网络的车辆状态估计方法。这项工作的基本思想是通过实验数据确定影响车辆性能的几个关键参数。然后将测试数据输入到仿真模型中进行网络训练和验证。结果表明,该方法能较好地估计车辆状态,且车辆操纵动力学中侧滑角的绝对误差较小。结果证明了估计方法的有效性及其对自适应驾驶辅助系统实施或自动调整车载控制器参数的潜在益处,以及所提出方案在估计状态和未知输入方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle state estimation based on PSO-RBF neural network
In the last few years, many closed-loop control systems have been introduced in the automotive field to increase the level of safety and driving automation. For the integration of such systems, it is critical to estimate motion states and parameters of the vehicle that are not exactly known or that change over time. In order to estimate the motion states and parameters, a method based on PSO-RBF neural network is presented to solve problem of vehicle state estimation in vehicle handling dynamics. The basic idea behind the work was to identify several key parameters which affected the performance of vehicle by experimental data. Then the test data was input to the simulation model for network training and verification. The results show that the method can estimate vehicle state successfully with small absolute error of side slip angle in vehicle handling dynamics. Results are included to demonstrate the effectiveness of the estimation approach and its potential benefit towards the implementation of adaptive driving assistance systems or to automatically adjust the parameters of onboard controllers as well as the effectiveness of the proposed scheme in the estimation of states and unknown inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信