{"title":"多变量指数加权移动样本协方差控制图监测协方差矩阵","authors":"S. A. Vaghefi, A. Amiri","doi":"10.1504/IJQET.2016.081627","DOIUrl":null,"url":null,"abstract":"In this paper, a control chart is proposed to detect changes in the covariance matrix of a multivariate normal process, when sample size is one. The proposed chart statistic is constructed based on the exponentially weighted form of sample covariance matrix given by individual observation over time. Distance between the values of variance and covariance components in this multivariate exponentially weighted moving sample covariance matrix and, the in-control corresponding elements of process variance-covariance matrix provides a basis for process variability monitoring. The statistical performance of the proposed method is evaluated through the use of a Monte Carlo simulation. The results show the superiority of the proposed control chart performance especially in the case of incremental changes in covariance matrix.","PeriodicalId":38209,"journal":{"name":"International Journal of Quality Engineering and Technology","volume":"6 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJQET.2016.081627","citationCount":"1","resultStr":"{\"title\":\"Multivariate exponentially weighted moving sample covariance control chart for monitoring covariance matrix\",\"authors\":\"S. A. Vaghefi, A. Amiri\",\"doi\":\"10.1504/IJQET.2016.081627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a control chart is proposed to detect changes in the covariance matrix of a multivariate normal process, when sample size is one. The proposed chart statistic is constructed based on the exponentially weighted form of sample covariance matrix given by individual observation over time. Distance between the values of variance and covariance components in this multivariate exponentially weighted moving sample covariance matrix and, the in-control corresponding elements of process variance-covariance matrix provides a basis for process variability monitoring. The statistical performance of the proposed method is evaluated through the use of a Monte Carlo simulation. The results show the superiority of the proposed control chart performance especially in the case of incremental changes in covariance matrix.\",\"PeriodicalId\":38209,\"journal\":{\"name\":\"International Journal of Quality Engineering and Technology\",\"volume\":\"6 1\",\"pages\":\"20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJQET.2016.081627\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJQET.2016.081627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJQET.2016.081627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Multivariate exponentially weighted moving sample covariance control chart for monitoring covariance matrix
In this paper, a control chart is proposed to detect changes in the covariance matrix of a multivariate normal process, when sample size is one. The proposed chart statistic is constructed based on the exponentially weighted form of sample covariance matrix given by individual observation over time. Distance between the values of variance and covariance components in this multivariate exponentially weighted moving sample covariance matrix and, the in-control corresponding elements of process variance-covariance matrix provides a basis for process variability monitoring. The statistical performance of the proposed method is evaluated through the use of a Monte Carlo simulation. The results show the superiority of the proposed control chart performance especially in the case of incremental changes in covariance matrix.
期刊介绍:
IJQET fosters the exchange and dissemination of research publications aimed at the latest developments in all areas of quality engineering. The thrust of this international journal is to publish original full-length articles on experimental and theoretical basic research with scholarly rigour. IJQET particularly welcomes those emerging methodologies and techniques in concise and quantitative expressions of the theoretical and practical engineering and science disciplines.