钢板故障多类分类的mahalanobi - taguchi系统

Q4 Engineering
Adebolaji A. Jobi-Taiwo, E. Cudney
{"title":"钢板故障多类分类的mahalanobi - taguchi系统","authors":"Adebolaji A. Jobi-Taiwo, E. Cudney","doi":"10.1504/IJQET.2015.069231","DOIUrl":null,"url":null,"abstract":"Fault identification is fundamental to condition monitoring. An identification method for a single fault is unbalanced as there are usually multiple possible failures involved when considering a system. This paper presents a method for applying the Mahalanobis-Taguchi system (MTS) in a multiclass problem space. MTS provides a means of extracting information in a multidimensional system and integrating information from different variables into a single composite metric. MTS is used to construct reference scales by creating individual measurement scales for each class. These measurement scales are based on the Mahalanobis distance (MD) for each sample. Orthogonal arrays (OA) and signal-to-noise (SN) ratio are used to identify variables of importance and these variables are used to construct a reduced model of the measurement scale. By reducing the dimensionality of the problem, less variables are tracked which reduces the cost of the system monitoring. A classification threshold based on 1.5 sigma shift from the centre of the measurement scales was utilised for each class. In order to evaluate the effectiveness of the method presented, a case on multiple fault class of manufacturing a steel plate is studied, and results indicate the practicality of the method in industrial applications.","PeriodicalId":38209,"journal":{"name":"International Journal of Quality Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJQET.2015.069231","citationCount":"8","resultStr":"{\"title\":\"Mahalanobis-Taguchi System for Multiclass Classification of Steel Plates Fault\",\"authors\":\"Adebolaji A. Jobi-Taiwo, E. Cudney\",\"doi\":\"10.1504/IJQET.2015.069231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault identification is fundamental to condition monitoring. An identification method for a single fault is unbalanced as there are usually multiple possible failures involved when considering a system. This paper presents a method for applying the Mahalanobis-Taguchi system (MTS) in a multiclass problem space. MTS provides a means of extracting information in a multidimensional system and integrating information from different variables into a single composite metric. MTS is used to construct reference scales by creating individual measurement scales for each class. These measurement scales are based on the Mahalanobis distance (MD) for each sample. Orthogonal arrays (OA) and signal-to-noise (SN) ratio are used to identify variables of importance and these variables are used to construct a reduced model of the measurement scale. By reducing the dimensionality of the problem, less variables are tracked which reduces the cost of the system monitoring. A classification threshold based on 1.5 sigma shift from the centre of the measurement scales was utilised for each class. In order to evaluate the effectiveness of the method presented, a case on multiple fault class of manufacturing a steel plate is studied, and results indicate the practicality of the method in industrial applications.\",\"PeriodicalId\":38209,\"journal\":{\"name\":\"International Journal of Quality Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJQET.2015.069231\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJQET.2015.069231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJQET.2015.069231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

摘要

故障识别是状态监测的基础。单个故障的识别方法是不平衡的,因为在考虑系统时通常涉及多个可能的故障。本文提出了一种在多类问题空间中应用Mahalanobis-Taguchi系统(MTS)的方法。MTS提供了一种从多维系统中提取信息并将来自不同变量的信息集成到单个复合度量中的方法。MTS通过为每个类别创建单独的测量量表来构建参考量表。这些测量尺度是基于每个样本的马氏距离(MD)。利用正交阵列(OA)和信噪比(SN)识别重要变量,并利用这些变量构建测量量表的约简模型。通过降低问题的维数,跟踪的变量更少,从而降低了系统监控的成本。对每个类别使用基于距离测量量表中心1.5西格玛位移的分类阈值。为评价该方法的有效性,以某钢板制造过程中的多故障类别为例进行了研究,结果表明了该方法在工业应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mahalanobis-Taguchi System for Multiclass Classification of Steel Plates Fault
Fault identification is fundamental to condition monitoring. An identification method for a single fault is unbalanced as there are usually multiple possible failures involved when considering a system. This paper presents a method for applying the Mahalanobis-Taguchi system (MTS) in a multiclass problem space. MTS provides a means of extracting information in a multidimensional system and integrating information from different variables into a single composite metric. MTS is used to construct reference scales by creating individual measurement scales for each class. These measurement scales are based on the Mahalanobis distance (MD) for each sample. Orthogonal arrays (OA) and signal-to-noise (SN) ratio are used to identify variables of importance and these variables are used to construct a reduced model of the measurement scale. By reducing the dimensionality of the problem, less variables are tracked which reduces the cost of the system monitoring. A classification threshold based on 1.5 sigma shift from the centre of the measurement scales was utilised for each class. In order to evaluate the effectiveness of the method presented, a case on multiple fault class of manufacturing a steel plate is studied, and results indicate the practicality of the method in industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quality Engineering and Technology
International Journal of Quality Engineering and Technology Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: IJQET fosters the exchange and dissemination of research publications aimed at the latest developments in all areas of quality engineering. The thrust of this international journal is to publish original full-length articles on experimental and theoretical basic research with scholarly rigour. IJQET particularly welcomes those emerging methodologies and techniques in concise and quantitative expressions of the theoretical and practical engineering and science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信