M. Soundararajan, Neha Deora, L. Lincoln, Purandhi Roopmani, Shikha Gupta, Rajatha Shambu
{"title":"由铁皮姜合成的生物源银纳米颗粒及其抗真菌性能","authors":"M. Soundararajan, Neha Deora, L. Lincoln, Purandhi Roopmani, Shikha Gupta, Rajatha Shambu","doi":"10.1504/IJBNN.2014.065471","DOIUrl":null,"url":null,"abstract":"A silver particle at the nanoscale level behaves as an effective antimicrobial agent and offers numerous applications in biosensing and medicine. The current study unveils the effect of rhizome of Zingiber officinale and its silver nanoparticles against the growth and hydrolytic enzyme of two lethal moulds, Alternaria alternata and Curvularia lunata. The rhizome of Zingiber officinale was extracted under aseptic conditions to get cold distilled water and silver nanoparticle extracts in order to check the effect on inhibition of cell mass formation and protease activity of Curvularia lunata and Alternaria alternata. The formation of silver nanoparticles was confirmed by UV-Vis absorption spectroscopy and scanning electron microscopy. The obtained results showed that the highest tested concentration (2%) of Zingiber officinale in cold distilled water and silver nanoparticle extracts strongly inhibited the cell mass formation as well as protease activity in test organisms. The silver nanoparticle extract showed potent antifungal activity when compared to cold distilled water extract. The study unravels the antifungal property of Zingiber officinale and its biogenically synthesised silver nanoparticles that can be exploited further for therapeutical and other industrial applications.","PeriodicalId":89939,"journal":{"name":"International journal of biomedical nanoscience and nanotechnology","volume":"3 1","pages":"251"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBNN.2014.065471","citationCount":"1","resultStr":"{\"title\":\"Biogenic silver nanoparticles synthesised from Zingiber officinale and its antifungal properties\",\"authors\":\"M. Soundararajan, Neha Deora, L. Lincoln, Purandhi Roopmani, Shikha Gupta, Rajatha Shambu\",\"doi\":\"10.1504/IJBNN.2014.065471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silver particle at the nanoscale level behaves as an effective antimicrobial agent and offers numerous applications in biosensing and medicine. The current study unveils the effect of rhizome of Zingiber officinale and its silver nanoparticles against the growth and hydrolytic enzyme of two lethal moulds, Alternaria alternata and Curvularia lunata. The rhizome of Zingiber officinale was extracted under aseptic conditions to get cold distilled water and silver nanoparticle extracts in order to check the effect on inhibition of cell mass formation and protease activity of Curvularia lunata and Alternaria alternata. The formation of silver nanoparticles was confirmed by UV-Vis absorption spectroscopy and scanning electron microscopy. The obtained results showed that the highest tested concentration (2%) of Zingiber officinale in cold distilled water and silver nanoparticle extracts strongly inhibited the cell mass formation as well as protease activity in test organisms. The silver nanoparticle extract showed potent antifungal activity when compared to cold distilled water extract. The study unravels the antifungal property of Zingiber officinale and its biogenically synthesised silver nanoparticles that can be exploited further for therapeutical and other industrial applications.\",\"PeriodicalId\":89939,\"journal\":{\"name\":\"International journal of biomedical nanoscience and nanotechnology\",\"volume\":\"3 1\",\"pages\":\"251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBNN.2014.065471\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biomedical nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBNN.2014.065471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBNN.2014.065471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biogenic silver nanoparticles synthesised from Zingiber officinale and its antifungal properties
A silver particle at the nanoscale level behaves as an effective antimicrobial agent and offers numerous applications in biosensing and medicine. The current study unveils the effect of rhizome of Zingiber officinale and its silver nanoparticles against the growth and hydrolytic enzyme of two lethal moulds, Alternaria alternata and Curvularia lunata. The rhizome of Zingiber officinale was extracted under aseptic conditions to get cold distilled water and silver nanoparticle extracts in order to check the effect on inhibition of cell mass formation and protease activity of Curvularia lunata and Alternaria alternata. The formation of silver nanoparticles was confirmed by UV-Vis absorption spectroscopy and scanning electron microscopy. The obtained results showed that the highest tested concentration (2%) of Zingiber officinale in cold distilled water and silver nanoparticle extracts strongly inhibited the cell mass formation as well as protease activity in test organisms. The silver nanoparticle extract showed potent antifungal activity when compared to cold distilled water extract. The study unravels the antifungal property of Zingiber officinale and its biogenically synthesised silver nanoparticles that can be exploited further for therapeutical and other industrial applications.