电动汽车轮毂电机电磁振动研究

Q4 Engineering
Chen Qiping, Xie Jiachao, Q. Xiao, L. Liming, Wang Ning, Wang Liang
{"title":"电动汽车轮毂电机电磁振动研究","authors":"Chen Qiping, Xie Jiachao, Q. Xiao, L. Liming, Wang Ning, Wang Liang","doi":"10.1504/ijvnv.2019.10030183","DOIUrl":null,"url":null,"abstract":"In order to solve the electromagnetic vibration problem of in-wheel motors for electric vehicles, a numerical analysis method is presented for analysing the modal of in-wheel motor. The finite element models of inner stator core, inner stator core with winding and outer rotor are established respectively. The analysis results show that the higher the order of modal vibration shape, the higher the natural frequency. The critical speed of the outer rotor is analysed and studied, which shows that the outer rotor will not cause greater vibration to the in-wheel motor when it works. The harmonic response of in-wheel motor is analysed and the displacement-frequency curves of inner stator and outer rotor are obtained respectively. The analysis results show that the in-wheel motor is not in the frequency range of electromagnetic force wave. When the frequency is higher, the deformation displacement amplitude will reach the maximum.","PeriodicalId":34979,"journal":{"name":"International Journal of Vehicle Noise and Vibration","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on electromagnetic vibration of in-wheel motor for electric vehicle\",\"authors\":\"Chen Qiping, Xie Jiachao, Q. Xiao, L. Liming, Wang Ning, Wang Liang\",\"doi\":\"10.1504/ijvnv.2019.10030183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the electromagnetic vibration problem of in-wheel motors for electric vehicles, a numerical analysis method is presented for analysing the modal of in-wheel motor. The finite element models of inner stator core, inner stator core with winding and outer rotor are established respectively. The analysis results show that the higher the order of modal vibration shape, the higher the natural frequency. The critical speed of the outer rotor is analysed and studied, which shows that the outer rotor will not cause greater vibration to the in-wheel motor when it works. The harmonic response of in-wheel motor is analysed and the displacement-frequency curves of inner stator and outer rotor are obtained respectively. The analysis results show that the in-wheel motor is not in the frequency range of electromagnetic force wave. When the frequency is higher, the deformation displacement amplitude will reach the maximum.\",\"PeriodicalId\":34979,\"journal\":{\"name\":\"International Journal of Vehicle Noise and Vibration\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Noise and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvnv.2019.10030183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Noise and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvnv.2019.10030183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了解决电动汽车轮毂电机的电磁振动问题,提出了一种分析轮毂电机模态的数值分析方法。分别建立了定子内铁心、带绕组的定子内铁心和外转子的有限元模型。分析结果表明,模态振型阶数越高,固有频率越高。分析和研究了外转子的临界转速,表明外转子在工作时不会对轮毂电机造成较大的振动。分析了轮毂电机的谐波响应,分别得到了内定子和外转子的位移-频率曲线。分析结果表明,轮毂电机不在电磁力波的频率范围内。当频率较高时,变形位移幅值达到最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on electromagnetic vibration of in-wheel motor for electric vehicle
In order to solve the electromagnetic vibration problem of in-wheel motors for electric vehicles, a numerical analysis method is presented for analysing the modal of in-wheel motor. The finite element models of inner stator core, inner stator core with winding and outer rotor are established respectively. The analysis results show that the higher the order of modal vibration shape, the higher the natural frequency. The critical speed of the outer rotor is analysed and studied, which shows that the outer rotor will not cause greater vibration to the in-wheel motor when it works. The harmonic response of in-wheel motor is analysed and the displacement-frequency curves of inner stator and outer rotor are obtained respectively. The analysis results show that the in-wheel motor is not in the frequency range of electromagnetic force wave. When the frequency is higher, the deformation displacement amplitude will reach the maximum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Noise and Vibration
International Journal of Vehicle Noise and Vibration Engineering-Automotive Engineering
CiteScore
0.90
自引率
0.00%
发文量
17
期刊介绍: The IJVNV has been established as an international authoritative reference in the field. It publishes refereed papers that address vehicle noise and vibration from the perspectives of customers, engineers and manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信