{"title":"基于霍夫变换和皮肤比的头部遮挡人脸检测新算法","authors":"T. Charoenpong, Patarida Sanitthai","doi":"10.14456/VOL12ISS8PP","DOIUrl":null,"url":null,"abstract":"The performance of current algorithms used in occluded face detection for surveillance systems is limited when detecting a face covered with an obstacle, or a non-frontal view of the face. Therefore, a method able to capture a face from any viewpoint is necessary. In this paper, we propose a new algorithm by using 2 subdivision regions and skin ratio for detecting occluded faces from any head viewpoint during +90 degrees to -90 degrees around the yaw axis. This algorithm consists of 3 steps: head region identification, skin extraction, and occluded face detection. First, the system is fed with an image sequence capturing the whole target body, to define the head region. The head region is detected using a blob technique under an experimental condition. Second, skin data is extracted, for computing skin ratio. Skin color is considered in multiple color spaces, and compared with a database by Mahalanobis Distance technique. Third, for occluded face detection, the human head area is equally divided into 2 vertical regions. The skin ratio of each part is used as a criterion for occlusion detection. To test the performance of the proposed algorithm, data from 35 subjects is used. The data of a subject is captured from any viewpoint of the head, varying from +90 degrees to -90 degrees. As this paper aims to develop surveillance systems, obstacles covering the whole face are focused on, such as helmets and masks. The accuracy rate of non-occluded face and occluded face detection is 98.81 and 94.90 %, respectively. The average accuracy rate is 95.39 %. The advantage of this method over recent research is that this is the first method to detect an occluded face from any viewpoint of the head varying from +90 degrees to -90 degrees. doi: 10.14456/WJST.2015.4","PeriodicalId":38275,"journal":{"name":"Walailak Journal of Science and Technology","volume":"12 1","pages":"35-49"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A New Algorithm to Detect Occluded Face from a Head Viewpoint using Hough Transform and Skin Ratio\",\"authors\":\"T. Charoenpong, Patarida Sanitthai\",\"doi\":\"10.14456/VOL12ISS8PP\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of current algorithms used in occluded face detection for surveillance systems is limited when detecting a face covered with an obstacle, or a non-frontal view of the face. Therefore, a method able to capture a face from any viewpoint is necessary. In this paper, we propose a new algorithm by using 2 subdivision regions and skin ratio for detecting occluded faces from any head viewpoint during +90 degrees to -90 degrees around the yaw axis. This algorithm consists of 3 steps: head region identification, skin extraction, and occluded face detection. First, the system is fed with an image sequence capturing the whole target body, to define the head region. The head region is detected using a blob technique under an experimental condition. Second, skin data is extracted, for computing skin ratio. Skin color is considered in multiple color spaces, and compared with a database by Mahalanobis Distance technique. Third, for occluded face detection, the human head area is equally divided into 2 vertical regions. The skin ratio of each part is used as a criterion for occlusion detection. To test the performance of the proposed algorithm, data from 35 subjects is used. The data of a subject is captured from any viewpoint of the head, varying from +90 degrees to -90 degrees. As this paper aims to develop surveillance systems, obstacles covering the whole face are focused on, such as helmets and masks. The accuracy rate of non-occluded face and occluded face detection is 98.81 and 94.90 %, respectively. The average accuracy rate is 95.39 %. The advantage of this method over recent research is that this is the first method to detect an occluded face from any viewpoint of the head varying from +90 degrees to -90 degrees. doi: 10.14456/WJST.2015.4\",\"PeriodicalId\":38275,\"journal\":{\"name\":\"Walailak Journal of Science and Technology\",\"volume\":\"12 1\",\"pages\":\"35-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Walailak Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14456/VOL12ISS8PP\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Walailak Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14456/VOL12ISS8PP","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
A New Algorithm to Detect Occluded Face from a Head Viewpoint using Hough Transform and Skin Ratio
The performance of current algorithms used in occluded face detection for surveillance systems is limited when detecting a face covered with an obstacle, or a non-frontal view of the face. Therefore, a method able to capture a face from any viewpoint is necessary. In this paper, we propose a new algorithm by using 2 subdivision regions and skin ratio for detecting occluded faces from any head viewpoint during +90 degrees to -90 degrees around the yaw axis. This algorithm consists of 3 steps: head region identification, skin extraction, and occluded face detection. First, the system is fed with an image sequence capturing the whole target body, to define the head region. The head region is detected using a blob technique under an experimental condition. Second, skin data is extracted, for computing skin ratio. Skin color is considered in multiple color spaces, and compared with a database by Mahalanobis Distance technique. Third, for occluded face detection, the human head area is equally divided into 2 vertical regions. The skin ratio of each part is used as a criterion for occlusion detection. To test the performance of the proposed algorithm, data from 35 subjects is used. The data of a subject is captured from any viewpoint of the head, varying from +90 degrees to -90 degrees. As this paper aims to develop surveillance systems, obstacles covering the whole face are focused on, such as helmets and masks. The accuracy rate of non-occluded face and occluded face detection is 98.81 and 94.90 %, respectively. The average accuracy rate is 95.39 %. The advantage of this method over recent research is that this is the first method to detect an occluded face from any viewpoint of the head varying from +90 degrees to -90 degrees. doi: 10.14456/WJST.2015.4
期刊介绍:
The Walailak Journal of Science and Technology (Walailak J. Sci. & Tech. or WJST), is a peer-reviewed journal covering all areas of science and technology, launched in 2004. It is published 12 Issues (Monthly) by the Institute of Research and Innovation of Walailak University. The scope of the journal includes the following areas of research : - Natural Sciences: Biochemistry, Chemical Engineering, Chemistry, Materials Science, Mathematics, Molecular Biology, Physics and Astronomy. -Life Sciences: Allied Health Sciences, Biomedical Sciences, Dentistry, Genetics, Immunology and Microbiology, Medicine, Neuroscience, Nursing, Pharmaceutics, Psychology, Public Health, Tropical Medicine, Veterinary. -Applied Sciences: Agricultural, Aquaculture, Biotechnology, Computer Science, Cybernetics, Earth and Planetary, Energy, Engineering, Environmental, Food Science, Information Technology, Meat Science, Nanotechnology, Plant Sciences, Systemics