{"title":"利用诱导多能干细胞模型研究丙戊酸诱导alpers综合征肝毒性的机制","authors":"Jingyi Guo, Zhongfu Ying, Yi Wu, Xingguo Liu","doi":"10.14800/SCTI.838","DOIUrl":null,"url":null,"abstract":"Valproic acid (VPA) is a widely used antiepileptic drug to treat epilepsy and psychiatric disorders, but potentially causes idiosyncratic liver injury. Alpers-Huttenlocher syndrome (AHS), a neurometabolic disorder caused by mutations in mitochondrial DNA polymerase gamma (POLG), is associated with an increased risk of developing fatal VPA hepatotoxicity. However, the mechanistic link of this clinical mystery remains unknown. Here, we established an induced pluripotent stem cell (iPSC) toxicity model to explore the mechanism behind the high risk of VPA-induced liver injury in AHS. By this model, we demonstrated that AHS iPSCs-hepatocytes are more sensitive to VPA-induced mitochondrial-dependent apoptosis than controls. Furthermore, Superoxide flashes, spontaneous bursts of superoxide generation, caused by opening of the mitochondrial permeability transition pore (mPTP), occur more frequently in AHS iPSCs-hepatocytes, and the mPTP inhibitor, cyclosporine A, is able to rescue VPA-induced apoptotic sensitivity. In addition, carnitine and N-acetylcysteine, which has been used to treat VPA-induced liver injury, also rescue VPA-induced apoptotic sensitivity.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of valproic acid-induced hepatotoxicity in alpers syndrome using an induced pluripotent stem cell model\",\"authors\":\"Jingyi Guo, Zhongfu Ying, Yi Wu, Xingguo Liu\",\"doi\":\"10.14800/SCTI.838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Valproic acid (VPA) is a widely used antiepileptic drug to treat epilepsy and psychiatric disorders, but potentially causes idiosyncratic liver injury. Alpers-Huttenlocher syndrome (AHS), a neurometabolic disorder caused by mutations in mitochondrial DNA polymerase gamma (POLG), is associated with an increased risk of developing fatal VPA hepatotoxicity. However, the mechanistic link of this clinical mystery remains unknown. Here, we established an induced pluripotent stem cell (iPSC) toxicity model to explore the mechanism behind the high risk of VPA-induced liver injury in AHS. By this model, we demonstrated that AHS iPSCs-hepatocytes are more sensitive to VPA-induced mitochondrial-dependent apoptosis than controls. Furthermore, Superoxide flashes, spontaneous bursts of superoxide generation, caused by opening of the mitochondrial permeability transition pore (mPTP), occur more frequently in AHS iPSCs-hepatocytes, and the mPTP inhibitor, cyclosporine A, is able to rescue VPA-induced apoptotic sensitivity. In addition, carnitine and N-acetylcysteine, which has been used to treat VPA-induced liver injury, also rescue VPA-induced apoptotic sensitivity.\",\"PeriodicalId\":90974,\"journal\":{\"name\":\"Stem cell and translational investigation\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell and translational investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/SCTI.838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell and translational investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/SCTI.838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanism of valproic acid-induced hepatotoxicity in alpers syndrome using an induced pluripotent stem cell model
Valproic acid (VPA) is a widely used antiepileptic drug to treat epilepsy and psychiatric disorders, but potentially causes idiosyncratic liver injury. Alpers-Huttenlocher syndrome (AHS), a neurometabolic disorder caused by mutations in mitochondrial DNA polymerase gamma (POLG), is associated with an increased risk of developing fatal VPA hepatotoxicity. However, the mechanistic link of this clinical mystery remains unknown. Here, we established an induced pluripotent stem cell (iPSC) toxicity model to explore the mechanism behind the high risk of VPA-induced liver injury in AHS. By this model, we demonstrated that AHS iPSCs-hepatocytes are more sensitive to VPA-induced mitochondrial-dependent apoptosis than controls. Furthermore, Superoxide flashes, spontaneous bursts of superoxide generation, caused by opening of the mitochondrial permeability transition pore (mPTP), occur more frequently in AHS iPSCs-hepatocytes, and the mPTP inhibitor, cyclosporine A, is able to rescue VPA-induced apoptotic sensitivity. In addition, carnitine and N-acetylcysteine, which has been used to treat VPA-induced liver injury, also rescue VPA-induced apoptotic sensitivity.