G. Walmsley, Michael S. Hu, H. Lorenz, M. Longaker
{"title":"监测干细胞命运和功能的系统","authors":"G. Walmsley, Michael S. Hu, H. Lorenz, M. Longaker","doi":"10.14800/SCTI.1195","DOIUrl":null,"url":null,"abstract":"Cell based therapies represent a promising area of research in regenerative medicine. However, the mechanism by which transplanted cells contribute to bone healing remains unclear. The authors utilized a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen type I alpha 1 promoter/enhancer sequence ( Col1a1 GFP ) and membrane-bound tomato red constitutively in all cells types ( R26 mTmG ) to decipher how both transplanted and endogenous cells mediate bone healing (1). Calvarial healing was assessed using both parietal and frontal defects and showed that frontal osteoblasts express Col1a1 to a significantly greater degree than parietal osteoblasts. Col1a1 GFP ; R26 mTmG mice were also used to observe the behavior of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts following transplantation into critical-sized calvarial defects. ASCs significantly increased the rate of bone healing and exhibited both increased survival and Col1a1 expression when compared to BM-MSCs and osteoblasts. These results support the Col1a1 GFP ; R26 mTmG system as a promising technology for the evaluation of stem cell populations in cell-based therapeutics for the purposes of bone healing.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A system for the surveillance of stem cell fate and function\",\"authors\":\"G. Walmsley, Michael S. Hu, H. Lorenz, M. Longaker\",\"doi\":\"10.14800/SCTI.1195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell based therapies represent a promising area of research in regenerative medicine. However, the mechanism by which transplanted cells contribute to bone healing remains unclear. The authors utilized a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen type I alpha 1 promoter/enhancer sequence ( Col1a1 GFP ) and membrane-bound tomato red constitutively in all cells types ( R26 mTmG ) to decipher how both transplanted and endogenous cells mediate bone healing (1). Calvarial healing was assessed using both parietal and frontal defects and showed that frontal osteoblasts express Col1a1 to a significantly greater degree than parietal osteoblasts. Col1a1 GFP ; R26 mTmG mice were also used to observe the behavior of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts following transplantation into critical-sized calvarial defects. ASCs significantly increased the rate of bone healing and exhibited both increased survival and Col1a1 expression when compared to BM-MSCs and osteoblasts. These results support the Col1a1 GFP ; R26 mTmG system as a promising technology for the evaluation of stem cell populations in cell-based therapeutics for the purposes of bone healing.\",\"PeriodicalId\":90974,\"journal\":{\"name\":\"Stem cell and translational investigation\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell and translational investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/SCTI.1195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell and translational investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/SCTI.1195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A system for the surveillance of stem cell fate and function
Cell based therapies represent a promising area of research in regenerative medicine. However, the mechanism by which transplanted cells contribute to bone healing remains unclear. The authors utilized a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen type I alpha 1 promoter/enhancer sequence ( Col1a1 GFP ) and membrane-bound tomato red constitutively in all cells types ( R26 mTmG ) to decipher how both transplanted and endogenous cells mediate bone healing (1). Calvarial healing was assessed using both parietal and frontal defects and showed that frontal osteoblasts express Col1a1 to a significantly greater degree than parietal osteoblasts. Col1a1 GFP ; R26 mTmG mice were also used to observe the behavior of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts following transplantation into critical-sized calvarial defects. ASCs significantly increased the rate of bone healing and exhibited both increased survival and Col1a1 expression when compared to BM-MSCs and osteoblasts. These results support the Col1a1 GFP ; R26 mTmG system as a promising technology for the evaluation of stem cell populations in cell-based therapeutics for the purposes of bone healing.