{"title":"带有microRNA-21零突变的talen工程人细胞系","authors":"J. Kurata, R. Lin","doi":"10.14800/RD.727","DOIUrl":null,"url":null,"abstract":"Dysregulation of microRNA-21 (miR-21) is associated with many types of cancer as well as with kidney and cardiovascular diseases. Aberrant expression of miR-21 leads to multiple phenotypic alterations including cellular proliferation, invasiveness, apoptosis, and fibrosis. We recently used transcription activator-like effector nucleases to engineer human cell lines with miR-21 null mutations. As expected, loss of miR-21 resulted in decrease cell proliferation and reduced transforming activity in culture and in xenografts. Besides an increase of apoptotic gene expression, miR-21 knockout cells also had significantly increased expression of genes involved in extracellular matrix interaction. Results from small RNA sequencing suggest that miR-21 deletion changed the microRNA expression profile. These results raise intriguing possibilities that loss of miR-21 expression may influence cellular interactions and that cells with long term miR-21 deficiency may compensate for the loss of this highly expressed microRNA by changing the abundance of alternate microRNAs or the AGO2 protein in order to maintain the microRNA-AGO2 homeostasis. Further characterization and utilization of miR-21 knockout human cells will shed new light on this pathologically important microRNA.","PeriodicalId":90965,"journal":{"name":"RNA & disease (Houston, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TALEN-engineered human cell lines with microRNA-21 null mutations\",\"authors\":\"J. Kurata, R. Lin\",\"doi\":\"10.14800/RD.727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dysregulation of microRNA-21 (miR-21) is associated with many types of cancer as well as with kidney and cardiovascular diseases. Aberrant expression of miR-21 leads to multiple phenotypic alterations including cellular proliferation, invasiveness, apoptosis, and fibrosis. We recently used transcription activator-like effector nucleases to engineer human cell lines with miR-21 null mutations. As expected, loss of miR-21 resulted in decrease cell proliferation and reduced transforming activity in culture and in xenografts. Besides an increase of apoptotic gene expression, miR-21 knockout cells also had significantly increased expression of genes involved in extracellular matrix interaction. Results from small RNA sequencing suggest that miR-21 deletion changed the microRNA expression profile. These results raise intriguing possibilities that loss of miR-21 expression may influence cellular interactions and that cells with long term miR-21 deficiency may compensate for the loss of this highly expressed microRNA by changing the abundance of alternate microRNAs or the AGO2 protein in order to maintain the microRNA-AGO2 homeostasis. Further characterization and utilization of miR-21 knockout human cells will shed new light on this pathologically important microRNA.\",\"PeriodicalId\":90965,\"journal\":{\"name\":\"RNA & disease (Houston, Tex.)\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA & disease (Houston, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/RD.727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA & disease (Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/RD.727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TALEN-engineered human cell lines with microRNA-21 null mutations
Dysregulation of microRNA-21 (miR-21) is associated with many types of cancer as well as with kidney and cardiovascular diseases. Aberrant expression of miR-21 leads to multiple phenotypic alterations including cellular proliferation, invasiveness, apoptosis, and fibrosis. We recently used transcription activator-like effector nucleases to engineer human cell lines with miR-21 null mutations. As expected, loss of miR-21 resulted in decrease cell proliferation and reduced transforming activity in culture and in xenografts. Besides an increase of apoptotic gene expression, miR-21 knockout cells also had significantly increased expression of genes involved in extracellular matrix interaction. Results from small RNA sequencing suggest that miR-21 deletion changed the microRNA expression profile. These results raise intriguing possibilities that loss of miR-21 expression may influence cellular interactions and that cells with long term miR-21 deficiency may compensate for the loss of this highly expressed microRNA by changing the abundance of alternate microRNAs or the AGO2 protein in order to maintain the microRNA-AGO2 homeostasis. Further characterization and utilization of miR-21 knockout human cells will shed new light on this pathologically important microRNA.