{"title":"阿拉巴马州奥本大学校园雨水管理系统的评估与解决方案","authors":"Alamin Molla, C. Mitra, J. Vasconcelos","doi":"10.14796/jwmm.c488","DOIUrl":null,"url":null,"abstract":"Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of and Solutions to the Stormwater Management System of Auburn University Campus in Auburn, Alabama\",\"authors\":\"Alamin Molla, C. Mitra, J. Vasconcelos\",\"doi\":\"10.14796/jwmm.c488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.\",\"PeriodicalId\":43297,\"journal\":{\"name\":\"Journal of Water Management Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Management Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14796/jwmm.c488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessment of and Solutions to the Stormwater Management System of Auburn University Campus in Auburn, Alabama
Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.