阿拉巴马州奥本大学校园雨水管理系统的评估与解决方案

IF 1.2 Q4 WATER RESOURCES
Alamin Molla, C. Mitra, J. Vasconcelos
{"title":"阿拉巴马州奥本大学校园雨水管理系统的评估与解决方案","authors":"Alamin Molla, C. Mitra, J. Vasconcelos","doi":"10.14796/jwmm.c488","DOIUrl":null,"url":null,"abstract":"Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of and Solutions to the Stormwater Management System of Auburn University Campus in Auburn, Alabama\",\"authors\":\"Alamin Molla, C. Mitra, J. Vasconcelos\",\"doi\":\"10.14796/jwmm.c488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.\",\"PeriodicalId\":43297,\"journal\":{\"name\":\"Journal of Water Management Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Management Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14796/jwmm.c488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

雨水管理需要注意,因为它会引起地表水浸和附近水体的污染。奥本大学的Parkerson Mill Creek就是一个例子,它通过地表径流受到污染。在本研究中,使用个人计算机雨水管理模型(PCSWMM)来确定奥本大学校园现有雨水网络对洪水的易感性。最大流速图用于识别与三种流速(高、中、低)相关的区域,以找到潜在侵蚀的区域。在各种可持续雨水管理举措中,通过文献综述发现,生物滞留细胞通过筛选径流中的污染物以及通过降低地表水流速来减少侵蚀,具有最大的改善雨水质量的潜力。生物滞留电池的适用性分析确定了校园内8个可以安装生物滞留电池的区域,以实现最有效的雨水管理。这项研究强调了PCSWMM模型和技术在提高任何地区雨水系统效率方面的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of and Solutions to the Stormwater Management System of Auburn University Campus in Auburn, Alabama
Stormwater management needs attention as it causes surface flooding and pollution of nearby waterbodies. Parkerson Mill Creek in Auburn University, which gets polluted through surface runoff, is an example of this. In this study, a Personal Computer Stormwater Management Model (PCSWMM) was used to determine the susceptibility of the existing stormwater network to flooding on the Auburn University campus. Maximum water velocity mapping was used to identify areas associated with 3 categories of velocity (high, medium, and low) to find areas of potential erosion. Among the various sustainable stormwater management initiatives, it was found through a literature review that bioretention cells had the greatest potential to improve stormwater quality by screening pollutants from runoff water as well as minimizing erosion by reducing surface water velocity. Suitability analysis for bioretention cells identified 8 areas on the campus where bioretention cell could be installed for the most effective stormwater management. This study highlights the usability of PCSWMM models and techniques in increasing the efficiency of the stormwater system in any locality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信