使用SWMM LID控件进行基于滞留的设计,深入了解绿色屋顶建模

IF 1.2 Q4 WATER RESOURCES
S. Jeffers, B. Garner, Derek Hidalgo, Dionisi Daoularis, Oscar Warmerdam
{"title":"使用SWMM LID控件进行基于滞留的设计,深入了解绿色屋顶建模","authors":"S. Jeffers, B. Garner, Derek Hidalgo, Dionisi Daoularis, Oscar Warmerdam","doi":"10.14796/jwmm.c484","DOIUrl":null,"url":null,"abstract":"Rainfall–runoff responses were observed in a laboratory environment using a rainfall simulator and a 7.43 m2 green roof cassette equipped with weighing lysimeters. SWMM LID controls were developed for various green roof profile configurations based on the physical properties of the composite materials. Unknown parameters affecting the drainage layer were adjusted in calibration. The cassette was modeled both as a typical Green Roof LID control using Manning’s equation at the drainage layer and a Bioretention LID control using an orifice equation in the drainage layer. Key parameters from a sensitivity analysis that were not directly measured were Manning’s roughness of the drainage layer, the drainage coefficient at the orifice, and the conductivity slope (HCO). The hydraulics of roof drains were considered by varying the width of the drain outlet from 0.25 m–1.22 m. During calibration and validation of multiple events, SWMM modeling resulted in a good fit compared to observed results (Nash–Sutcliffe model efficiency coefficient values of 0.70–0.89). Key limitations of SWMM green roof modeling are discussed with suggested improvements for future consideration.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Insights into green roof modeling using SWMM LID controls for detention-based designs\",\"authors\":\"S. Jeffers, B. Garner, Derek Hidalgo, Dionisi Daoularis, Oscar Warmerdam\",\"doi\":\"10.14796/jwmm.c484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall–runoff responses were observed in a laboratory environment using a rainfall simulator and a 7.43 m2 green roof cassette equipped with weighing lysimeters. SWMM LID controls were developed for various green roof profile configurations based on the physical properties of the composite materials. Unknown parameters affecting the drainage layer were adjusted in calibration. The cassette was modeled both as a typical Green Roof LID control using Manning’s equation at the drainage layer and a Bioretention LID control using an orifice equation in the drainage layer. Key parameters from a sensitivity analysis that were not directly measured were Manning’s roughness of the drainage layer, the drainage coefficient at the orifice, and the conductivity slope (HCO). The hydraulics of roof drains were considered by varying the width of the drain outlet from 0.25 m–1.22 m. During calibration and validation of multiple events, SWMM modeling resulted in a good fit compared to observed results (Nash–Sutcliffe model efficiency coefficient values of 0.70–0.89). Key limitations of SWMM green roof modeling are discussed with suggested improvements for future consideration.\",\"PeriodicalId\":43297,\"journal\":{\"name\":\"Journal of Water Management Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Management Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14796/jwmm.c484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 6

摘要

在实验室环境中,使用降雨模拟器和配备称重溶渗仪的7.43 m2绿色屋顶盒观察降雨径流响应。SWMM LID控制器是根据复合材料的物理特性为各种绿色屋顶轮廓配置开发的。校正影响排水层的未知参数。盒式结构既采用典型的Green Roof LID控制模型,在泄水层采用Manning方程,又采用bioreretention LID控制模型,在泄水层采用孔板方程。敏感性分析中没有直接测量的关键参数是泄水层的曼宁粗糙度、孔处的泄水系数和电导率斜率(HCO)。通过改变排水口的宽度从0.25 m到1.22 m来考虑屋顶排水口的水力学。在多个事件的校准和验证过程中,SWMM模型与观测结果(Nash-Sutcliffe模型效率系数值为0.70-0.89)拟合良好。讨论了SWMM绿色屋顶建模的主要局限性,并提出了改进建议,以供将来考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into green roof modeling using SWMM LID controls for detention-based designs
Rainfall–runoff responses were observed in a laboratory environment using a rainfall simulator and a 7.43 m2 green roof cassette equipped with weighing lysimeters. SWMM LID controls were developed for various green roof profile configurations based on the physical properties of the composite materials. Unknown parameters affecting the drainage layer were adjusted in calibration. The cassette was modeled both as a typical Green Roof LID control using Manning’s equation at the drainage layer and a Bioretention LID control using an orifice equation in the drainage layer. Key parameters from a sensitivity analysis that were not directly measured were Manning’s roughness of the drainage layer, the drainage coefficient at the orifice, and the conductivity slope (HCO). The hydraulics of roof drains were considered by varying the width of the drain outlet from 0.25 m–1.22 m. During calibration and validation of multiple events, SWMM modeling resulted in a good fit compared to observed results (Nash–Sutcliffe model efficiency coefficient values of 0.70–0.89). Key limitations of SWMM green roof modeling are discussed with suggested improvements for future consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信