基于全球概念模式的降雨流模拟:以阿尔及利亚西北部Beni Bahdel流域为例

IF 1.2 Q4 WATER RESOURCES
Sid Ahmed Bouguerra, Bekhta Mansour
{"title":"基于全球概念模式的降雨流模拟:以阿尔及利亚西北部Beni Bahdel流域为例","authors":"Sid Ahmed Bouguerra, Bekhta Mansour","doi":"10.14796/jwmm.c500","DOIUrl":null,"url":null,"abstract":"Rainfall-flow modeling remains necessary, even essential, to understand the dynamics of a watershed and to solve problems related to the disruption of hydrological regimes. It has been proven effective by providing solutions to many water-related problems, such as sizing and management of structures, and flood forecasting. Global hydrological models can simulate the transformation of rainfall data into flows on natural basins for many practical applications in the field of water resource management. Our study aims to evaluate the reliability of one of these models, that of Rural Engineering 'GR' at three time steps: annual (GR1A), monthly (GR2M), and daily (GR4J), which will be applied to the Beni Bahdel watershed with an area of 1040 km², one of the sub-basins of Northwestern Algeria. The input parameters are precipitation and potential evapotranspiration (PET), and the output parameters are flows. The results obtained, both in calibration and validations, are encouraging, where the evaluation criteria taken into consideration, namely the Nash criterion and the correlation coefficient, exceeded 70% and 0.80 respectively. The study could be a decision-making tool for the simulation of flows, and be very useful for future hydraulic developments in the study area.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall-flow Modeling Using a Global Conceptual Model: Case of the Beni Bahdel Watershed (Northwest of Algeria)\",\"authors\":\"Sid Ahmed Bouguerra, Bekhta Mansour\",\"doi\":\"10.14796/jwmm.c500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall-flow modeling remains necessary, even essential, to understand the dynamics of a watershed and to solve problems related to the disruption of hydrological regimes. It has been proven effective by providing solutions to many water-related problems, such as sizing and management of structures, and flood forecasting. Global hydrological models can simulate the transformation of rainfall data into flows on natural basins for many practical applications in the field of water resource management. Our study aims to evaluate the reliability of one of these models, that of Rural Engineering 'GR' at three time steps: annual (GR1A), monthly (GR2M), and daily (GR4J), which will be applied to the Beni Bahdel watershed with an area of 1040 km², one of the sub-basins of Northwestern Algeria. The input parameters are precipitation and potential evapotranspiration (PET), and the output parameters are flows. The results obtained, both in calibration and validations, are encouraging, where the evaluation criteria taken into consideration, namely the Nash criterion and the correlation coefficient, exceeded 70% and 0.80 respectively. The study could be a decision-making tool for the simulation of flows, and be very useful for future hydraulic developments in the study area.\",\"PeriodicalId\":43297,\"journal\":{\"name\":\"Journal of Water Management Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Management Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14796/jwmm.c500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

为了了解流域的动态和解决与水文制度破坏有关的问题,降雨流量模型仍然是必要的,甚至是必不可少的。它已被证明是有效的,为许多与水有关的问题提供了解决方案,如建筑物的大小和管理,以及洪水预报。全球水文模型可以模拟自然流域的降雨数据向流量的转化,在水资源管理领域有许多实际应用。我们的研究旨在评估其中一种模型的可靠性,即农村工程“GR”模型在三个时间步上的可靠性:年度(GR1A)、月度(GR2M)和每日(GR4J),该模型将应用于面积为1040平方公里的Beni Bahdel流域,该流域是阿尔及利亚西北部的一个子盆地。输入参数为降水和潜在蒸散发(PET),输出参数为流量。所考虑的评价标准,即纳什准则和相关系数,分别超过70%和0.80,在校准和验证中获得的结果都是令人鼓舞的。该研究可作为水流模拟的决策工具,对研究区未来的水力开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainfall-flow Modeling Using a Global Conceptual Model: Case of the Beni Bahdel Watershed (Northwest of Algeria)
Rainfall-flow modeling remains necessary, even essential, to understand the dynamics of a watershed and to solve problems related to the disruption of hydrological regimes. It has been proven effective by providing solutions to many water-related problems, such as sizing and management of structures, and flood forecasting. Global hydrological models can simulate the transformation of rainfall data into flows on natural basins for many practical applications in the field of water resource management. Our study aims to evaluate the reliability of one of these models, that of Rural Engineering 'GR' at three time steps: annual (GR1A), monthly (GR2M), and daily (GR4J), which will be applied to the Beni Bahdel watershed with an area of 1040 km², one of the sub-basins of Northwestern Algeria. The input parameters are precipitation and potential evapotranspiration (PET), and the output parameters are flows. The results obtained, both in calibration and validations, are encouraging, where the evaluation criteria taken into consideration, namely the Nash criterion and the correlation coefficient, exceeded 70% and 0.80 respectively. The study could be a decision-making tool for the simulation of flows, and be very useful for future hydraulic developments in the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信