EF4, EF4- m和EF4-Ł: BN4和两个无强Łukasiewicz-type模态悖论的模态四值系统的伴侣

IF 0.6 Q2 LOGIC
J. Blanco
{"title":"EF4, EF4- m和EF4-Ł: BN4和两个无强Łukasiewicz-type模态悖论的模态四值系统的伴侣","authors":"J. Blanco","doi":"10.12775/llp.2021.010","DOIUrl":null,"url":null,"abstract":"The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of (relevant) implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a Belnap-Dunn semantics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł are strongly sound and complete w.r.t. their respective semantics and that EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes\",\"authors\":\"J. Blanco\",\"doi\":\"10.12775/llp.2021.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of (relevant) implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a Belnap-Dunn semantics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł are strongly sound and complete w.r.t. their respective semantics and that EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2021.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2021.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

摘要

逻辑BN4被R.T. Brady定义为Routley和Meyer基本逻辑b的四值扩展,系统EF4被定义为BN4的伴侣,以表示(相关)蕴涵的四值系统。系统Ł由J. Łukasiewicz定义,它是一个四值模态逻辑,用于验证所谓的强Łukasiewicz-type模态悖论。系统EF4- m和EF4-Ł被定义为没有模态悖论的Ł的替代品。本文旨在定义EF4、EF4- m和EF4-Ł的Belnap-Dunn语义。结果表明,EF4、EF4- m和EF4-Ł在语义上是强健全完备的,EF4- m和EF4-Ł不存在强Łukasiewicz-type模态悖论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes
The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of (relevant) implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a Belnap-Dunn semantics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł are strongly sound and complete w.r.t. their respective semantics and that EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信