{"title":"用TLBO算法确定斜拉桥适当后张索力","authors":"Barbaros Atmaca","doi":"10.12989/SCS.2021.40.6.805","DOIUrl":null,"url":null,"abstract":"The pleasing appearances, economic and easy construction of cable-stayed footbridges (CSFB) have made them one of the most preferred options for pedestrian traffic crossing over the highways. The basic structural members of CSFB can be sortable as a foundation, pylon, deck, and stay-cables. The stay-cable has an important role in the formation of structural integrity by ensuring that the deck and pylon work together with the help of proper post-tensioning forces (PTF) applied to them. In this study, it is aim to determine proper set of PTF with the help of the developed optimization process which provides to work together metaheuristic algorithm named Teaching-Learning-Based Optimization (TLBO) and Open Applicable Programming Interface (OAPI) properties of SAP2000 with codes created in MATLAB. In addition of this aim, the study also presents the importance of PTF for structural behavior of CSFB. TLBO algorithms use a randomly created initial population. The teacher phase and student phase are the main part of this algorithm. Five different proper sets of PTF are determined by using developed optimization process and the structural response such as displacement and internal forces of structural members of the selected CSFB compared with each other. Consequently, PTF directly affects the behavior of CSFB, as it ensures that displacements of deck and pylon remain between the acceptable limits, controls the distribution and magnitude of the internal forces for different load combinations. Furthermore, the evaluation of PTF might not have a single solution because CSFB are highly statically indeterminate so there are more different possible sets of PTFs that satisfy strength and serviceability requirements.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"40 1","pages":"805"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm\",\"authors\":\"Barbaros Atmaca\",\"doi\":\"10.12989/SCS.2021.40.6.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pleasing appearances, economic and easy construction of cable-stayed footbridges (CSFB) have made them one of the most preferred options for pedestrian traffic crossing over the highways. The basic structural members of CSFB can be sortable as a foundation, pylon, deck, and stay-cables. The stay-cable has an important role in the formation of structural integrity by ensuring that the deck and pylon work together with the help of proper post-tensioning forces (PTF) applied to them. In this study, it is aim to determine proper set of PTF with the help of the developed optimization process which provides to work together metaheuristic algorithm named Teaching-Learning-Based Optimization (TLBO) and Open Applicable Programming Interface (OAPI) properties of SAP2000 with codes created in MATLAB. In addition of this aim, the study also presents the importance of PTF for structural behavior of CSFB. TLBO algorithms use a randomly created initial population. The teacher phase and student phase are the main part of this algorithm. Five different proper sets of PTF are determined by using developed optimization process and the structural response such as displacement and internal forces of structural members of the selected CSFB compared with each other. Consequently, PTF directly affects the behavior of CSFB, as it ensures that displacements of deck and pylon remain between the acceptable limits, controls the distribution and magnitude of the internal forces for different load combinations. Furthermore, the evaluation of PTF might not have a single solution because CSFB are highly statically indeterminate so there are more different possible sets of PTFs that satisfy strength and serviceability requirements.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"40 1\",\"pages\":\"805\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.40.6.805\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.6.805","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm
The pleasing appearances, economic and easy construction of cable-stayed footbridges (CSFB) have made them one of the most preferred options for pedestrian traffic crossing over the highways. The basic structural members of CSFB can be sortable as a foundation, pylon, deck, and stay-cables. The stay-cable has an important role in the formation of structural integrity by ensuring that the deck and pylon work together with the help of proper post-tensioning forces (PTF) applied to them. In this study, it is aim to determine proper set of PTF with the help of the developed optimization process which provides to work together metaheuristic algorithm named Teaching-Learning-Based Optimization (TLBO) and Open Applicable Programming Interface (OAPI) properties of SAP2000 with codes created in MATLAB. In addition of this aim, the study also presents the importance of PTF for structural behavior of CSFB. TLBO algorithms use a randomly created initial population. The teacher phase and student phase are the main part of this algorithm. Five different proper sets of PTF are determined by using developed optimization process and the structural response such as displacement and internal forces of structural members of the selected CSFB compared with each other. Consequently, PTF directly affects the behavior of CSFB, as it ensures that displacements of deck and pylon remain between the acceptable limits, controls the distribution and magnitude of the internal forces for different load combinations. Furthermore, the evaluation of PTF might not have a single solution because CSFB are highly statically indeterminate so there are more different possible sets of PTFs that satisfy strength and serviceability requirements.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.