基于最大剪应力路径的增强弯曲裂纹混合I/II型断裂准则预测复合材料断裂

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Sadra Shahsavar, M. Fakoor, F. Berto
{"title":"基于最大剪应力路径的增强弯曲裂纹混合I/II型断裂准则预测复合材料断裂","authors":"Sadra Shahsavar, M. Fakoor, F. Berto","doi":"10.12989/SCS.2021.39.6.765","DOIUrl":null,"url":null,"abstract":"In this paper, a fracture criterion for predicting the failure of the cracked composite specimens under mixed mode I/II loading is provided. Various tests performed on composite components reveal that cracks always grow along the fibers in the isotropic media. Using a new material model called reinforcement isotropic solid (RIS) concept, it is possible to extend the isotropic mixed mode fracture criteria into composite materials. In the proposed criterion, maximum shear stress (MSS) theory which is widely used for failure investigation of un-cracked isotropic materials will be extended to composite materials in combination with RIS concept. In the present study, cracks are oriented along the fibers in the isotropic material. It is assumed that at the onset of fracture, crack growth will be in a path where the shear stress has the highest value according to the MSS criterion. Investigating the results of this criterion and comparing with the available experimental data, it is shown that, both the crack propagation path and the moment of crack growth are well predicted. Available mixed mode I/II fracture data of various wood species are used to evaluate and verify the theoretical results.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"39 1","pages":"765"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path\",\"authors\":\"Sadra Shahsavar, M. Fakoor, F. Berto\",\"doi\":\"10.12989/SCS.2021.39.6.765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fracture criterion for predicting the failure of the cracked composite specimens under mixed mode I/II loading is provided. Various tests performed on composite components reveal that cracks always grow along the fibers in the isotropic media. Using a new material model called reinforcement isotropic solid (RIS) concept, it is possible to extend the isotropic mixed mode fracture criteria into composite materials. In the proposed criterion, maximum shear stress (MSS) theory which is widely used for failure investigation of un-cracked isotropic materials will be extended to composite materials in combination with RIS concept. In the present study, cracks are oriented along the fibers in the isotropic material. It is assumed that at the onset of fracture, crack growth will be in a path where the shear stress has the highest value according to the MSS criterion. Investigating the results of this criterion and comparing with the available experimental data, it is shown that, both the crack propagation path and the moment of crack growth are well predicted. Available mixed mode I/II fracture data of various wood species are used to evaluate and verify the theoretical results.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"39 1\",\"pages\":\"765\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.39.6.765\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.39.6.765","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种预测裂纹复合材料试件在I/II混合模式加载下破坏的断裂准则。对复合材料构件进行的各种试验表明,在各向同性介质中,裂纹总是沿着纤维生长。采用一种新的材料模型,即增强各向同性固体(RIS)概念,将各向同性混合模式断裂准则扩展到复合材料中。在该准则中,将广泛应用于无裂纹各向同性材料破坏研究的最大剪切应力理论与RIS概念相结合,扩展到复合材料中。在本研究中,裂纹沿各向同性材料的纤维取向。假设在断裂开始时,根据MSS准则,裂纹扩展将沿着剪应力最大的路径进行。对该准则的计算结果进行了分析,并与已有的实验数据进行了比较,结果表明,该准则对裂纹扩展路径和裂纹扩展矩的预测都很好。利用现有的各种树种的混合模式I/II裂缝数据对理论结果进行了评价和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path
In this paper, a fracture criterion for predicting the failure of the cracked composite specimens under mixed mode I/II loading is provided. Various tests performed on composite components reveal that cracks always grow along the fibers in the isotropic media. Using a new material model called reinforcement isotropic solid (RIS) concept, it is possible to extend the isotropic mixed mode fracture criteria into composite materials. In the proposed criterion, maximum shear stress (MSS) theory which is widely used for failure investigation of un-cracked isotropic materials will be extended to composite materials in combination with RIS concept. In the present study, cracks are oriented along the fibers in the isotropic material. It is assumed that at the onset of fracture, crack growth will be in a path where the shear stress has the highest value according to the MSS criterion. Investigating the results of this criterion and comparing with the available experimental data, it is shown that, both the crack propagation path and the moment of crack growth are well predicted. Available mixed mode I/II fracture data of various wood species are used to evaluate and verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信