W. Guo, Zheng Liang, Zhenyu Sun, S. Xiao, Yaohui Jin, Weiqiang Sun, Weisheng Hu
{"title":"考虑故障概率的光网络分布式计算任务调度","authors":"W. Guo, Zheng Liang, Zhenyu Sun, S. Xiao, Yaohui Jin, Weiqiang Sun, Weisheng Hu","doi":"10.1364/JON.7.000947","DOIUrl":null,"url":null,"abstract":"The optical network integrated computing environment has been thought of as a promising technology to support large-scale data-intensive distributed computing applications. For such an environment involving so many heterogeneous resources, such as high-performance processors and optical links, faults seem to be inevitable. The faults will lead to the failure of the applications or highly delay the applications' finish times. Therefore, it is necessary to analyze resources' fault probability and then to better schedule the tasks of the application onto the appropriate resources so as to minimize the fault probability of the application. We address the task-scheduling problem based on the fault probability analysis for distributed computing applications over an optical network. We quantitatively analyze the fault probability of the processors and optical links in a given interval and propose a minimal fault probability (MFP) task-scheduling algorithm to minimize the fault probability of the application. We develop a simulator to evaluate the performance of the MFP algorithm. The simulation results prove the efficiency of the MFP algorithm.","PeriodicalId":49154,"journal":{"name":"Journal of Optical Networking","volume":"46 1","pages":"947-957"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1364/JON.7.000947","citationCount":"6","resultStr":"{\"title\":\"Task scheduling considering fault probability for distributed computing applications over an optical network\",\"authors\":\"W. Guo, Zheng Liang, Zhenyu Sun, S. Xiao, Yaohui Jin, Weiqiang Sun, Weisheng Hu\",\"doi\":\"10.1364/JON.7.000947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical network integrated computing environment has been thought of as a promising technology to support large-scale data-intensive distributed computing applications. For such an environment involving so many heterogeneous resources, such as high-performance processors and optical links, faults seem to be inevitable. The faults will lead to the failure of the applications or highly delay the applications' finish times. Therefore, it is necessary to analyze resources' fault probability and then to better schedule the tasks of the application onto the appropriate resources so as to minimize the fault probability of the application. We address the task-scheduling problem based on the fault probability analysis for distributed computing applications over an optical network. We quantitatively analyze the fault probability of the processors and optical links in a given interval and propose a minimal fault probability (MFP) task-scheduling algorithm to minimize the fault probability of the application. We develop a simulator to evaluate the performance of the MFP algorithm. The simulation results prove the efficiency of the MFP algorithm.\",\"PeriodicalId\":49154,\"journal\":{\"name\":\"Journal of Optical Networking\",\"volume\":\"46 1\",\"pages\":\"947-957\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1364/JON.7.000947\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JON.7.000947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JON.7.000947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task scheduling considering fault probability for distributed computing applications over an optical network
The optical network integrated computing environment has been thought of as a promising technology to support large-scale data-intensive distributed computing applications. For such an environment involving so many heterogeneous resources, such as high-performance processors and optical links, faults seem to be inevitable. The faults will lead to the failure of the applications or highly delay the applications' finish times. Therefore, it is necessary to analyze resources' fault probability and then to better schedule the tasks of the application onto the appropriate resources so as to minimize the fault probability of the application. We address the task-scheduling problem based on the fault probability analysis for distributed computing applications over an optical network. We quantitatively analyze the fault probability of the processors and optical links in a given interval and propose a minimal fault probability (MFP) task-scheduling algorithm to minimize the fault probability of the application. We develop a simulator to evaluate the performance of the MFP algorithm. The simulation results prove the efficiency of the MFP algorithm.