{"title":"一类具有不定符号非线性的渐近自治哈密顿系统的同宿解","authors":"Donglun Wu","doi":"10.14232/ejqtde.2023.1.31","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the multiplicity of homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign potentials. The concentration-compactness principle is applied to show the compactness. As a byproduct, we obtain the uniqueness of the positive ground state solution for a class of autonomous Hamiltonian systems and the best constant for Sobolev inequality which are of independent interests.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign nonlinearities\",\"authors\":\"Donglun Wu\",\"doi\":\"10.14232/ejqtde.2023.1.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we obtain the multiplicity of homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign potentials. The concentration-compactness principle is applied to show the compactness. As a byproduct, we obtain the uniqueness of the positive ground state solution for a class of autonomous Hamiltonian systems and the best constant for Sobolev inequality which are of independent interests.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2023.1.31\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign nonlinearities
In this paper, we obtain the multiplicity of homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign potentials. The concentration-compactness principle is applied to show the compactness. As a byproduct, we obtain the uniqueness of the positive ground state solution for a class of autonomous Hamiltonian systems and the best constant for Sobolev inequality which are of independent interests.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.