具有陡势井的半线性退化Schrödinger方程基态解的存在性

IF 1.1 4区 数学 Q1 MATHEMATICS
Ling Ran, Shang-Jie Chen, Lin Li
{"title":"具有陡势井的半线性退化Schrödinger方程基态解的存在性","authors":"Ling Ran, Shang-Jie Chen, Lin Li","doi":"10.14232/ejqtde.2022.1.30","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we study the following degenerated Schrödinger equations: <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>λ<!-- λ --></mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mtext> </mml:mtext> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> is a parameter, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> </mml:math> is a degenerate elliptic operator, the potential <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> has a potential well with bottom and the nonlinearity <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> is either super-linear or sub-linear at infinity in <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> </mml:math>. The existence of ground state solution be obtained by using the variational methods.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well\",\"authors\":\"Ling Ran, Shang-Jie Chen, Lin Li\",\"doi\":\"10.14232/ejqtde.2022.1.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this article, we study the following degenerated Schrödinger equations: <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <mml:mtable columnalign=\\\"right left right left right left right left right left right left\\\" rowspacing=\\\"3pt\\\" columnspacing=\\\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\\\" displaystyle=\\\"true\\\"> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>λ<!-- λ --></mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mtext> </mml:mtext> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" /> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> is a parameter, <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msub> </mml:math> is a degenerate elliptic operator, the potential <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> has a potential well with bottom and the nonlinearity <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> is either super-linear or sub-linear at infinity in <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>u</mml:mi> </mml:math>. The existence of ground state solution be obtained by using the variational methods.</jats:p>\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.30\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.30","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了在薛定谔均等的追随者:{ − Δ γ u + λ V ( x ) u = f ( x ,在R N中,u ∈ E λ   , 在λ> 0是一个参数,Δ γ是a degenerate elliptic接线员,潜在的V (x)具有潜在的潜力,而非线性f (x, u)在你的无限中都是超线性或次线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well
In this article, we study the following degenerated Schrödinger equations: { Δ γ u + λ V ( x ) u = f ( x , u ) in   R N , u E λ   , where λ > 0 is a parameter, Δ γ is a degenerate elliptic operator, the potential V ( x ) has a potential well with bottom and the nonlinearity f ( x , u ) is either super-linear or sub-linear at infinity in u . The existence of ground state solution be obtained by using the variational methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信