流形上伪微分算子的几何与物理

G. Esposito, George M. Napolitano
{"title":"流形上伪微分算子的几何与物理","authors":"G. Esposito, George M. Napolitano","doi":"10.1393/ncc/i2015-15159-1","DOIUrl":null,"url":null,"abstract":"A review is made of the basic tools used in mathematics to define acalculus for pseudodifferential operators on Riemannian manifolds endowed with aconnection: existence theorem for the function that generalizes the phase; analogueof Taylor’s theorem; torsion and curvature terms in the symbolic calculus; the twokinds of derivative acting on smooth sections of the cotangent bundle of the Riemannianmanifold; the concept of symbol as an equivalence class. Physical motivationsand applications are then outlined, with emphasis on Green functions of quantumfield theory and Parker’s evaluation of Hawking radiation.","PeriodicalId":81495,"journal":{"name":"Il Nuovo cimento della Societa italiana di fisica. C","volume":"38 1","pages":"159"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometry and physics of pseudodifferential operators on manifolds\",\"authors\":\"G. Esposito, George M. Napolitano\",\"doi\":\"10.1393/ncc/i2015-15159-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review is made of the basic tools used in mathematics to define acalculus for pseudodifferential operators on Riemannian manifolds endowed with aconnection: existence theorem for the function that generalizes the phase; analogueof Taylor’s theorem; torsion and curvature terms in the symbolic calculus; the twokinds of derivative acting on smooth sections of the cotangent bundle of the Riemannianmanifold; the concept of symbol as an equivalence class. Physical motivationsand applications are then outlined, with emphasis on Green functions of quantumfield theory and Parker’s evaluation of Hawking radiation.\",\"PeriodicalId\":81495,\"journal\":{\"name\":\"Il Nuovo cimento della Societa italiana di fisica. C\",\"volume\":\"38 1\",\"pages\":\"159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Il Nuovo cimento della Societa italiana di fisica. C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1393/ncc/i2015-15159-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Il Nuovo cimento della Societa italiana di fisica. C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1393/ncc/i2015-15159-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

回顾了在数学中用来定义具有连通的黎曼流形上的伪微分算子的微积分的基本工具:广义相函数的存在性定理;泰勒定理的类比;符号微积分中的扭转项和曲率项作用于黎曼流形余切束光滑截面上的两类导数;符号作为等价类的概念。然后概述了物理动机和应用,重点是量子场论的格林函数和帕克对霍金辐射的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry and physics of pseudodifferential operators on manifolds
A review is made of the basic tools used in mathematics to define acalculus for pseudodifferential operators on Riemannian manifolds endowed with aconnection: existence theorem for the function that generalizes the phase; analogueof Taylor’s theorem; torsion and curvature terms in the symbolic calculus; the twokinds of derivative acting on smooth sections of the cotangent bundle of the Riemannianmanifold; the concept of symbol as an equivalence class. Physical motivationsand applications are then outlined, with emphasis on Green functions of quantumfield theory and Parker’s evaluation of Hawking radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信