平面拐点的周期函数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Huzak, D. Rojas
{"title":"平面拐点的周期函数","authors":"R. Huzak, D. Rojas","doi":"10.14232/EJQTDE.2021.1.16","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Period function of planar turning points\",\"authors\":\"R. Huzak, D. Rojas\",\"doi\":\"10.14232/EJQTDE.2021.1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/EJQTDE.2021.1.16\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.16","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究平面一般拐点和非一般拐点的周期函数。在一般情况下(参见。非泛型的;非简并的;简并中心在极限e→0处消失,其中e≥0为奇异摄动参数。我们证明,对于每一个e > 0和e ~ 0,周期函数是单调递增的。只有一个最小值)。结果在拐点的e-均匀邻域内是有效的。我们还解决了De Maesschalck和Dumortier(2007)提出的经典定次lisamadard系统中临界周期数目一致上界的部分猜想。我们使用奇异摄动理论和家庭爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Period function of planar turning points
This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信