{"title":"平面拐点的周期函数","authors":"R. Huzak, D. Rojas","doi":"10.14232/EJQTDE.2021.1.16","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Period function of planar turning points\",\"authors\":\"R. Huzak, D. Rojas\",\"doi\":\"10.14232/EJQTDE.2021.1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/EJQTDE.2021.1.16\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.16","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This paper is devoted to the study of the period function of planar generic and non-generic turning points. In the generic case (resp. non-generic) a non-degenerate (resp. degenerate) center disappears in the limit e → 0, where e ≥ 0 is the singular perturbation parameter. We show that, for each e > 0 and e ∼ 0, the period function is monotonously increasing (resp. has exactly one minimum). The result is valid in an e-uniform neighborhood of the turning points. We also solve a part of the conjecture about a uniform upper bound for the number of critical periods inside classical Liénard systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use singular perturbation theory and the family blow-up.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.