玻尔兹曼方程正态离散速度模型的构造

Mirela Vinerean, Åsa Windfäll, A. Bobylev
{"title":"玻尔兹曼方程正态离散速度模型的构造","authors":"Mirela Vinerean, Åsa Windfäll, A. Bobylev","doi":"10.1393/NCC/I2010-10563-7","DOIUrl":null,"url":null,"abstract":"Discretization methods have been developed on the idea of replacing the original Boltzmann equation (BE) by a finite set of nonlinear hyperbolic PDEs corresponding to the densities linked to a suitable finite set of velocities. One open problem related to the discrete BE is the construction of normal (fulfilling only physical conservation laws) discrete velocity models (DVMs). In many papers on DVMs, authors postulate from the beginning that a finite velocity space with such properties is given and after that study the discrete BE. Our aim is not to study the equations for DVMs, but to discuss all possible choices of finite sets of velocities satisfying this type of restrictions. Using our previous results, i.e. the general algorithm for the construction of normal discrete kinetic models (DKMs), we develop and implement an algorithm for the particular case of DVMs of the BE and give a complete classification for models with small number n of velocities (n ≤ 10).","PeriodicalId":81495,"journal":{"name":"Il Nuovo cimento della Societa italiana di fisica. C","volume":"33 1","pages":"257-264"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of Normal Discrete Velocity Models of the Boltzmann Equation\",\"authors\":\"Mirela Vinerean, Åsa Windfäll, A. Bobylev\",\"doi\":\"10.1393/NCC/I2010-10563-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discretization methods have been developed on the idea of replacing the original Boltzmann equation (BE) by a finite set of nonlinear hyperbolic PDEs corresponding to the densities linked to a suitable finite set of velocities. One open problem related to the discrete BE is the construction of normal (fulfilling only physical conservation laws) discrete velocity models (DVMs). In many papers on DVMs, authors postulate from the beginning that a finite velocity space with such properties is given and after that study the discrete BE. Our aim is not to study the equations for DVMs, but to discuss all possible choices of finite sets of velocities satisfying this type of restrictions. Using our previous results, i.e. the general algorithm for the construction of normal discrete kinetic models (DKMs), we develop and implement an algorithm for the particular case of DVMs of the BE and give a complete classification for models with small number n of velocities (n ≤ 10).\",\"PeriodicalId\":81495,\"journal\":{\"name\":\"Il Nuovo cimento della Societa italiana di fisica. C\",\"volume\":\"33 1\",\"pages\":\"257-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Il Nuovo cimento della Societa italiana di fisica. C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1393/NCC/I2010-10563-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Il Nuovo cimento della Societa italiana di fisica. C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1393/NCC/I2010-10563-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

离散化方法的思想是用一组有限的非线性双曲偏微分方程来代替原始的玻尔兹曼方程(BE),这些偏微分方程对应于与适当的有限速度集相关联的密度。与离散BE相关的一个开放问题是正常(仅满足物理守恒定律)离散速度模型(dvm)的构建。在许多关于dvm的论文中,作者从一开始就假定给定一个具有这种性质的有限速度空间,然后研究离散的BE。我们的目的不是研究dvm的方程,而是讨论满足这类限制的有限速度集的所有可能选择。利用我们之前的结果,即构建正常离散动力学模型(dkm)的通用算法,我们开发并实现了一种针对BE离散动力学模型的特殊情况的算法,并给出了具有少量速度(n≤10)的模型的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Normal Discrete Velocity Models of the Boltzmann Equation
Discretization methods have been developed on the idea of replacing the original Boltzmann equation (BE) by a finite set of nonlinear hyperbolic PDEs corresponding to the densities linked to a suitable finite set of velocities. One open problem related to the discrete BE is the construction of normal (fulfilling only physical conservation laws) discrete velocity models (DVMs). In many papers on DVMs, authors postulate from the beginning that a finite velocity space with such properties is given and after that study the discrete BE. Our aim is not to study the equations for DVMs, but to discuss all possible choices of finite sets of velocities satisfying this type of restrictions. Using our previous results, i.e. the general algorithm for the construction of normal discrete kinetic models (DKMs), we develop and implement an algorithm for the particular case of DVMs of the BE and give a complete classification for models with small number n of velocities (n ≤ 10).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信