利用马尔可夫链模型的首次通过时间支持证券交易所的财务决策

J. Stawicki
{"title":"利用马尔可夫链模型的首次通过时间支持证券交易所的财务决策","authors":"J. Stawicki","doi":"10.12775/DEM.2016.003","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to present the possibilities of using such a tool as Markov Chain to analyse the dynamics of returns observed at the Warsaw Stock Exchange. Process analysis is the basis for decision-making with regard to the accepted horizon. Expected times for achieving specified states, understood as intervals of rates of return, in particular those describing negative rates of return, are extremely important. In this context, there is a possibility of determining easily the value at risk with the accepted probability.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"16 1","pages":"37-47"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using the First Passage Times in Markov Chain Model to Support Financial Decisions on the Stock Exchange\",\"authors\":\"J. Stawicki\",\"doi\":\"10.12775/DEM.2016.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to present the possibilities of using such a tool as Markov Chain to analyse the dynamics of returns observed at the Warsaw Stock Exchange. Process analysis is the basis for decision-making with regard to the accepted horizon. Expected times for achieving specified states, understood as intervals of rates of return, in particular those describing negative rates of return, are extremely important. In this context, there is a possibility of determining easily the value at risk with the accepted probability.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"16 1\",\"pages\":\"37-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2016.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2016.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是介绍使用马尔可夫链这样的工具来分析华沙证券交易所观察到的回报动态的可能性。过程分析是关于可接受范围的决策的基础。达到特定状态的预期时间,理解为收益率的间隔,特别是那些描述负收益率的预期时间,是极其重要的。在这种情况下,有可能用可接受的概率轻松确定处于风险中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the First Passage Times in Markov Chain Model to Support Financial Decisions on the Stock Exchange
The purpose of this article is to present the possibilities of using such a tool as Markov Chain to analyse the dynamics of returns observed at the Warsaw Stock Exchange. Process analysis is the basis for decision-making with regard to the accepted horizon. Expected times for achieving specified states, understood as intervals of rates of return, in particular those describing negative rates of return, are extremely important. In this context, there is a possibility of determining easily the value at risk with the accepted probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信