符号交换GARCH(p,q,1)过程的无条件峰度公式

Joanna Górka
{"title":"符号交换GARCH(p,q,1)过程的无条件峰度公式","authors":"Joanna Górka","doi":"10.12775/DEM.2012.007","DOIUrl":null,"url":null,"abstract":"In the paper we argue that a general formula for the unconditional kurtosis of sign-switching GARCH(p,q,k) processes proposed by Thavaneswaran and Appadoo (2006) does not give correct results. To show that we revised the original theorem given by Thavaneswaran and Appadoo (2006) for the special case of the GARCH(p,q,k) process, i.e. GARCH(p,q,1). We show that the formula for the unconditional kurtosis basing on the original theorem and the revised version is different.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"12 1","pages":"105-110"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Formula of Unconditional Kurtosis of Sign-Switching GARCH(p,q,1) Processes\",\"authors\":\"Joanna Górka\",\"doi\":\"10.12775/DEM.2012.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we argue that a general formula for the unconditional kurtosis of sign-switching GARCH(p,q,k) processes proposed by Thavaneswaran and Appadoo (2006) does not give correct results. To show that we revised the original theorem given by Thavaneswaran and Appadoo (2006) for the special case of the GARCH(p,q,k) process, i.e. GARCH(p,q,1). We show that the formula for the unconditional kurtosis basing on the original theorem and the revised version is different.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"12 1\",\"pages\":\"105-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2012.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2012.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们认为Thavaneswaran和Appadoo(2006)提出的符号转换GARCH(p,q,k)过程无条件峰度的一般公式不能给出正确的结果。对于GARCH(p,q,k)过程的特殊情况,即GARCH(p,q,1),我们对Thavaneswaran和Appadoo(2006)给出的原定理进行了修正。我们证明了基于原定理的无条件峰度公式与修正后的无条件峰度公式是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Formula of Unconditional Kurtosis of Sign-Switching GARCH(p,q,1) Processes
In the paper we argue that a general formula for the unconditional kurtosis of sign-switching GARCH(p,q,k) processes proposed by Thavaneswaran and Appadoo (2006) does not give correct results. To show that we revised the original theorem given by Thavaneswaran and Appadoo (2006) for the special case of the GARCH(p,q,k) process, i.e. GARCH(p,q,1). We show that the formula for the unconditional kurtosis basing on the original theorem and the revised version is different.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信