符号RCA模型:VaR指标预测准确性的比较

Joanna Górka
{"title":"符号RCA模型:VaR指标预测准确性的比较","authors":"Joanna Górka","doi":"10.12775/DEM.2010.006","DOIUrl":null,"url":null,"abstract":"Evaluating Value at Risk (VaR) methods of predictive accuracy in an objective and effective framework is important for both efficient capital allocation and loss prediction. From this reasons, finding an adequate method of estimating and backtesting is crucial for both the regulators and the risk managers’. The Sign RCA models may be useful to obtain the accurate forecasts of VaR. In this research one briefly describes the Sign RCA models, the Value at Risk and backtesting. We compare the predictive accuracy of alternative VaR forecasts obtained from different models. Empirical example is mainly related to the PBG Capital Group shares on the Warsaw Stock Exchange.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"10 1","pages":"61-80"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Sign RCA Models: Comparing Predictive Accuracy of VaR Measures\",\"authors\":\"Joanna Górka\",\"doi\":\"10.12775/DEM.2010.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating Value at Risk (VaR) methods of predictive accuracy in an objective and effective framework is important for both efficient capital allocation and loss prediction. From this reasons, finding an adequate method of estimating and backtesting is crucial for both the regulators and the risk managers’. The Sign RCA models may be useful to obtain the accurate forecasts of VaR. In this research one briefly describes the Sign RCA models, the Value at Risk and backtesting. We compare the predictive accuracy of alternative VaR forecasts obtained from different models. Empirical example is mainly related to the PBG Capital Group shares on the Warsaw Stock Exchange.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"10 1\",\"pages\":\"61-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2010.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2010.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在客观有效的框架下评估风险价值(VaR)方法的预测准确性对于有效的资本配置和损失预测都是非常重要的。因此,找到一种适当的估算和回测方法对监管机构和风险管理者都至关重要。Sign RCA模型对于获得准确的VaR预测是有用的。本文简要介绍了Sign RCA模型、风险值和回溯检验。我们比较了从不同模型得到的替代VaR预测的预测精度。实证例子主要涉及到PBG资本集团在华沙证券交易所的股票。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sign RCA Models: Comparing Predictive Accuracy of VaR Measures
Evaluating Value at Risk (VaR) methods of predictive accuracy in an objective and effective framework is important for both efficient capital allocation and loss prediction. From this reasons, finding an adequate method of estimating and backtesting is crucial for both the regulators and the risk managers’. The Sign RCA models may be useful to obtain the accurate forecasts of VaR. In this research one briefly describes the Sign RCA models, the Value at Risk and backtesting. We compare the predictive accuracy of alternative VaR forecasts obtained from different models. Empirical example is mainly related to the PBG Capital Group shares on the Warsaw Stock Exchange.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信