用动态因子模型估计和预测波兰GDP

Jarosław Krajewski
{"title":"用动态因子模型估计和预测波兰GDP","authors":"Jarosław Krajewski","doi":"10.12775/DEM.2009.014","DOIUrl":null,"url":null,"abstract":"Presented paper concerns the dynamic factor models theory and application in the econometric analysis of GDP in Poland. DFMs are used for construction of the economic indicators and in forecasting, in analyses of the monetary policy and international business cycles. In the article we compare the forecast accuracy of DFMs with the forecast accuracy of 2 competitive models: AR model and symptomatic model. We have used 41 quarterly time series from the Polish economy. The results are encouraging. The DFM outperforms other models. The best fitted to empirical data was model with 3 factors.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"9 1","pages":"139-145"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating and Forecasting GDP in Poland with Dynamic Factor Model\",\"authors\":\"Jarosław Krajewski\",\"doi\":\"10.12775/DEM.2009.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented paper concerns the dynamic factor models theory and application in the econometric analysis of GDP in Poland. DFMs are used for construction of the economic indicators and in forecasting, in analyses of the monetary policy and international business cycles. In the article we compare the forecast accuracy of DFMs with the forecast accuracy of 2 competitive models: AR model and symptomatic model. We have used 41 quarterly time series from the Polish economy. The results are encouraging. The DFM outperforms other models. The best fitted to empirical data was model with 3 factors.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"9 1\",\"pages\":\"139-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2009.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2009.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究动态因子模型理论及其在波兰GDP计量分析中的应用。dfm用于构建经济指标,预测、分析货币政策和国际商业周期。本文比较了两种竞争模型的预测精度:AR模型和症状模型。我们使用了波兰经济的41个季度时间序列。结果令人鼓舞。DFM优于其他模型。与实证数据最拟合的是3因子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating and Forecasting GDP in Poland with Dynamic Factor Model
Presented paper concerns the dynamic factor models theory and application in the econometric analysis of GDP in Poland. DFMs are used for construction of the economic indicators and in forecasting, in analyses of the monetary policy and international business cycles. In the article we compare the forecast accuracy of DFMs with the forecast accuracy of 2 competitive models: AR model and symptomatic model. We have used 41 quarterly time series from the Polish economy. The results are encouraging. The DFM outperforms other models. The best fitted to empirical data was model with 3 factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信