伯努利过程的随机分析

IF 1.3 Q2 STATISTICS & PROBABILITY
Nicolas Privault
{"title":"伯努利过程的随机分析","authors":"Nicolas Privault","doi":"10.1214/08-PS139","DOIUrl":null,"url":null,"abstract":"These notes survey some aspects of discrete-time chaotic calculus \n and its applications, based on the chaos representation property \n for i.i.d. sequences of random variables. \n The topics covered include the Clark formula and predictable \n representation, anticipating calculus, covariance identities and \n functional inequalities (such as deviation and logarithmic Sobolev \n inequalities), and an application to option hedging in discrete time.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2008-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Stochastic analysis of Bernoulli processes\",\"authors\":\"Nicolas Privault\",\"doi\":\"10.1214/08-PS139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These notes survey some aspects of discrete-time chaotic calculus \\n and its applications, based on the chaos representation property \\n for i.i.d. sequences of random variables. \\n The topics covered include the Clark formula and predictable \\n representation, anticipating calculus, covariance identities and \\n functional inequalities (such as deviation and logarithmic Sobolev \\n inequalities), and an application to option hedging in discrete time.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2008-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/08-PS139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/08-PS139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 71

摘要

这些笔记根据随机变量的i.i.d序列的混沌表示性质,综述了离散时间混沌演算的一些方面及其应用。涵盖的主题包括克拉克公式和可预测表示,预测微积分,协方差恒等式和功能不等式(如偏差和对数Sobolev不等式),以及离散时间期权对冲的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic analysis of Bernoulli processes
These notes survey some aspects of discrete-time chaotic calculus and its applications, based on the chaos representation property for i.i.d. sequences of random variables. The topics covered include the Clark formula and predictable representation, anticipating calculus, covariance identities and functional inequalities (such as deviation and logarithmic Sobolev inequalities), and an application to option hedging in discrete time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信