在平缓的斜坡上,随机波单独和随机波加水流对垂直桩的冲刷

IF 0.7 Q4 ENGINEERING, OCEAN
M. Ong, D. Myrhaug, P. Fu
{"title":"在平缓的斜坡上,随机波单独和随机波加水流对垂直桩的冲刷","authors":"M. Ong, D. Myrhaug, P. Fu","doi":"10.12989/OSE.2016.6.2.161","DOIUrl":null,"url":null,"abstract":"This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"50 1","pages":"161-189"},"PeriodicalIF":0.7000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scour around vertical piles due to random waves alone and random waves plus currents on mild slopes\",\"authors\":\"M. Ong, D. Myrhaug, P. Fu\",\"doi\":\"10.12989/OSE.2016.6.2.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"50 1\",\"pages\":\"161-189\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2016.6.2.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2016.6.2.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 3

摘要

本文提供了一种实用的随机方法,利用该方法可以推导出在缓坡上受随机波加水流作用的垂直桩周围的最大平衡冲刷深度。该方法基于假设波浪为平稳窄带随机过程,采用Battjes和Groenendijk(2000)的缓坡波高分布,包括破碎波的影响,并使用Sumer和Fredsøe(2002)的水平海床冲刷深度经验公式。该方法适用于以波浪为主的流动条件。讨论了随海底坡度和水深变化的随机波单独和随机波加潮流的结果。提出了一种近似方法,并与随机方法进行了比较。对于单独的随机波,近似方法可以代替随机方法,而对于随机波加电流,则需要随机方法。对有关的缓坡随机波浪冲刷问题也提出了初步的研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scour around vertical piles due to random waves alone and random waves plus currents on mild slopes
This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
22.20%
发文量
0
期刊介绍: The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信