{"title":"带刚性盖的两流体系统内波的Boussinesq方程","authors":"Chi-Min Liu","doi":"10.12989/OSE.2016.6.1.117","DOIUrl":null,"url":null,"abstract":"2016) Abstract. A theoretical study of Boussinesq equations (BEs) for internal waves propagating in a two-fluid system is presented in this paper. The two-fluid system is assumed to be bounded by two rigid plates. A set of three equations is firstly derived which has three main unknowns, the interfacial displacement and two velocity potentials at arbitrary elevations for upper and lower fluids, respectively. The determination of the optimal BEs requires a solution of depth parameters which can be uniquely solved by applying the Padé approximation to dispersion relation. Some wave properties predicted by the optimal BEs are examined. The optimal model not only increases the applicable range of traditional BEs but also provides a novel aspect of internal wave","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"6 1","pages":"117-128"},"PeriodicalIF":0.7000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Boussinesq equations for internal waves in a two-fluid system with a rigid lid\",\"authors\":\"Chi-Min Liu\",\"doi\":\"10.12989/OSE.2016.6.1.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2016) Abstract. A theoretical study of Boussinesq equations (BEs) for internal waves propagating in a two-fluid system is presented in this paper. The two-fluid system is assumed to be bounded by two rigid plates. A set of three equations is firstly derived which has three main unknowns, the interfacial displacement and two velocity potentials at arbitrary elevations for upper and lower fluids, respectively. The determination of the optimal BEs requires a solution of depth parameters which can be uniquely solved by applying the Padé approximation to dispersion relation. Some wave properties predicted by the optimal BEs are examined. The optimal model not only increases the applicable range of traditional BEs but also provides a novel aspect of internal wave\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"6 1\",\"pages\":\"117-128\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2016.6.1.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2016.6.1.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Boussinesq equations for internal waves in a two-fluid system with a rigid lid
2016) Abstract. A theoretical study of Boussinesq equations (BEs) for internal waves propagating in a two-fluid system is presented in this paper. The two-fluid system is assumed to be bounded by two rigid plates. A set of three equations is firstly derived which has three main unknowns, the interfacial displacement and two velocity potentials at arbitrary elevations for upper and lower fluids, respectively. The determination of the optimal BEs requires a solution of depth parameters which can be uniquely solved by applying the Padé approximation to dispersion relation. Some wave properties predicted by the optimal BEs are examined. The optimal model not only increases the applicable range of traditional BEs but also provides a novel aspect of internal wave
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.